ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotics for Erdos-Solovej Zero Modes in Strong Fields

151   0   0.0 ( 0 )
 نشر من قبل Daniel M. Elton
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniel M. Elton




اسأل ChatGPT حول البحث

We consider the strong field asymptotics for the occurrence of zero modes of certain Weyl-Dirac operators on $mathbb{R}^3$. In particular we are interested in those operators $mathcal{D}_{B}$ for which the associated magnetic field $B$ is given by pulling back a $2$-form $beta$ from the sphere $mathbb{S}^2$ to $mathbb{R}^3$ using a combination of the Hopf fibration and inverse stereographic projection. If $int_{mathbb{S}^2}beta eq0$ we show that [ sum_{0le tle T}mathrm{dim},mathrm{Ker},mathcal{D}_{tB} =frac{T^2}{8pi^2},biggllvertint_{mathbb{S}^2}betabiggrrvert,int_{mathbb{S}^2}lvert{beta}rvert+o(T^2) ] as $Tto+infty$. The result relies on ErdH{o}s and Solovejs characterisation of the spectrum of $mathcal{D}_{tB}$ in terms of a family of Dirac operators on $mathbb{S}^2$, together with information about the strong field localisation of the Aharonov-Casher zero modes of the latter.

قيم البحث

اقرأ أيضاً

We show that Toda shock waves are asymptotically close to a modulated finite gap solution in the region separating the soliton and the elliptic wave regions. We previously derived formulas for the leading terms of the asymptotic expansion of these sh ock waves in all principal regions and conjectured that in the modulation region the next term is of order $O(t^{-1})$. In the present paper we prove this fact and investigate how resonances and eigenvalues influence the leading asymptotic behaviour. Our main contribution is the solution of the local parametrix Riemann-Hilbert problems and a rigorous justification of the analysis. In particular, this involves the construction of a proper singular matrix model solution.
We consider discrete spectra of bound states for non-relativistic motion in attractive potentials V_{sigma}(x) = -|V_{0}| |x|^{-sigma}, 0 < sigma leq 2. For these potentials the quasiclassical approximation for n -> infty predicts quantized energy le vels e_{sigma}(n) of a bounded spectrum varying as e_{sigma}(n) ~ -n^{-2sigma/(2-sigma)}. We construct collective quantum states using the set of wavefunctions of the discrete spectrum taking into account this asymptotic behaviour. We give examples of states that are normalizable and satisfy the resolution of unity, using explicit positive functions. These are coherent states in the sense of Klauder and their completeness is achieved via exact solutions of Hausdorff moment problems, obtained by combining Laplace and Mellin transform methods. For sigma in the range 0<sigmaleq 2/3 we present exact implementations of such states for the parametrization sigma = 2(k-l)/(3k-l), with k and l positive integers satisfying k>l.
132 - Roland Donninger 2014
We consider the radial wave equation in similarity coordinates within the semigroup formalism. It is known that the generator of the semigroup exhibits a continuum of eigenvalues and embedded in this continuum there exists a discrete set of eigenvalu es with analytic eigenfunctions. Our results show that, for sufficiently regular data, the long time behaviour of the solution is governed by the analytic eigenfunctions. The same techniques are applied to the linear stability problem for the fundamental self--similar solution $chi_T$ of the wave equation with a focusing power nonlinearity. Analogous to the free wave equation, we show that the long time behaviour (in similarity coordinates) of linear perturbations around $chi_T$ is governed by analytic mode solutions. In particular, this yields a rigorous proof for the linear stability of $chi_T$ with the sharp decay rate for the perturbations.
129 - T. Claeys , T. Grava 2009
We study the small dispersion limit for the Korteweg-de Vries (KdV) equation $u_t+6uu_x+epsilon^{2}u_{xxx}=0$ in a critical scaling regime where $x$ approaches the trailing edge of the region where the KdV solution shows oscillatory behavior. Using t he Riemann-Hilbert approach, we obtain an asymptotic expansion for the KdV solution in a double scaling limit, which shows that the oscillations degenerate to sharp pulses near the trailing edge. Locally those pulses resemble soliton solutions of the KdV equation.
Let $Lambda$ be a lattice in ${bf R}^d$ with positive co-volume. Among $Lambda$-periodic $N$-point configurations, we consider the minimal renormalized Riesz $s$-energy $mathcal{E}_{s,Lambda}(N)$. While the dominant term in the asymptotic expansion o f $mathcal{E}_{s,Lambda}(N)$ as $N$ goes to infinity in the long range case that $0<s<d$ (or $s=log$) can be obtained from classical potential theory, the next order term(s) require a different approach. Here we derive the form of the next order term or terms, namely for $s>0$ they are of the form $C_{s,d}|Lambda|^{-s/d}N^{1+s/d}$ and $-frac{2}{d}Nlog N+left(C_{log,d}-2zeta_{Lambda}(0)right)N$ where we show that the constant $C_{s,d}$ is independent of the lattice $Lambda$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا