ﻻ يوجد ملخص باللغة العربية
We show that Toda shock waves are asymptotically close to a modulated finite gap solution in the region separating the soliton and the elliptic wave regions. We previously derived formulas for the leading terms of the asymptotic expansion of these shock waves in all principal regions and conjectured that in the modulation region the next term is of order $O(t^{-1})$. In the present paper we prove this fact and investigate how resonances and eigenvalues influence the leading asymptotic behaviour. Our main contribution is the solution of the local parametrix Riemann-Hilbert problems and a rigorous justification of the analysis. In particular, this involves the construction of a proper singular matrix model solution.
In this paper, we discuss several concepts of the modern theory of discrete integrable systems, including: - Time discretization based on the notion of Backlund transformation; - Symplectic realizations of multi-Hamiltonian structures; - Interr
We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Toda lattice for decaying initial data in the soliton region. In addition, we point out how to reduce the problem in the remaining region to the known case without solitons.
We derive the long-time asymptotics for the Toda shock problem using the nonlinear steepest descent analysis for oscillatory Riemann--Hilbert factorization problems. We show that the half plane of space/time variables splits into five main regions: T
We consider semigroups ${alpha_t: ; tgeq 0}$ of normal, unital, completely positive maps $alpha_t$ on a von Neumann algebra ${mathcal M}$. The (predual) semigroup $ u_t (rho):= rho circ alpha_t$ on normal states $rho$ of $mathcal M$ leaves invariant
A connection between the finite ultradiscrete Toda lattice and the box-ball system is extended to the case where each box has own capacity and a carrier has a capacity parameter depending on time. In order to consider this connection, new carrier rul