ﻻ يوجد ملخص باللغة العربية
In this article, we calculate the friction between two counter-flowing bosonic and fermionic super-fluids. In the limit where the boson-boson and boson-fermion interactions can be treated within the mean-field approximation, we show that the force can be related to the dynamical structure factor of the fermionic component. Finally, we provide asymptotic expressions for weakly and strongly attractive fermions and show that the damping rate obeys simple scaling laws close to the critical velocity.
The dynamics of two penetrating superfluids exhibit an intriguing variety of nonlinear effects. Using two distinguishable components of a Bose-Einstein condensate, we investigate the counterflow of two superfluids in a narrow channel. We present the
We analyse a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC cross-over. Using a quasiparticle random phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC re
The recent experimental realization of Bose-Fermi superfluid mixtures of dilute ultracold atomic gases has opened new perspectives in the study of quantum many-body systems. Depending on the values of the scattering lengths and the amount of bosons a
We study the ground state of a bilayer system of dipolar bosons with dipoles oriented by an external field perpendicularly to the two parallel planes. By decreasing the interlayer distance, for a fixed value of the strength of the dipolar interaction
The splitting instability of a doubly-quantized vortex in the BEC-BCS crossover of a superfluid Fermi gas is investigated by means of a low-energy effective field theory. Our linear stability analysis and non-equilibrium numerical simulations reveal