ترغب بنشر مسار تعليمي؟ اضغط هنا

Surveying Galaxy Proto-clusters in Emission: A Large-scale Structure at z=2.44 and the Outlook for HETDEX

431   0   0.0 ( 0 )
 نشر من قبل Yi-Kuan Chiang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galaxy proto-clusters at z >~ 2 provide a direct probe of the rapid mass assembly and galaxy growth of present day massive clusters. Because of the need of precise galaxy redshifts for density mapping and the prevalence of star formation before quenching, nearly all the proto-clusters known to date were confirmed by spectroscopy of galaxies with strong emission lines. Therefore, large emission-line galaxy surveys provide an efficient way to identify proto-clusters directly. Here we report the discovery of a large-scale structure at z = 2.44 in the HETDEX Pilot Survey. On a scale of a few tens of Mpc comoving, this structure shows a complex overdensity of Lya emitters (LAE), which coincides with broad-band selected galaxies in the COSMOS/UltraVISTA photometric and zCOSMOS spectroscopic catalogs, as well as overdensities of intergalactic gas revealed in the Lya absorption maps of Lee et al. (2014). We construct mock LAE catalogs to predict the cosmic evolution of this structure. We find that such an overdensity should have already broken away from the Hubble flow, and part of the structure will collapse to form a galaxy cluster with 10^14.5 +- 0.4 M_sun by z = 0. The structure contains a higher median stellar mass of broad-band selected galaxies, a boost of extended Lya nebulae, and a marginal excess of active galactic nuclei relative to the field, supporting a scenario of accelerated galaxy evolution in cluster progenitors. Based on the correlation between galaxy overdensity and the z = 0 descendant halo mass calibrated in the simulation, we predict that several hundred 1.9 < z < 3.5 proto-clusters with z = 0 mass of > 10^14.5 M_sun will be discovered in the 8.5 Gpc^3 of space surveyed by the Hobby Eberly Telescope Dark Energy Experiment.



قيم البحث

اقرأ أيضاً

Diffuse cluster radio sources, in the form of radio halos and relics, reveal the presence of cosmic rays and magnetic fields in the intracluster medium (ICM). These cosmic rays are thought to be (re-)accelerated through ICM turbulence and shock waves generated by cluster merger events. Here we characterize the presence of diffuse radio emission in known galaxy clusters in the HETDEX Spring Field, covering 424 deg$^2$. For this, we developed a method to extract individual targets from LOFAR observations processed with the LoTSS DDF-pipeline. This procedure enables improved calibration and joint imaging and deconvolution of multiple pointings of selected targets. The calibration strategy can also be used for LOFAR Low-Band Antenna (LBA) and international-baseline observations. The fraction of Planck PSZ2 clusters with any diffuse radio emission apparently associated with the ICM is $73pm17%$. We detect a total of 10 radio halos and 12 candidate halos in the HETDEX Spring Field. Five clusters host radio relics. The fraction of radio halos in Planck PSZ2 clusters is $31pm11%$, and $62pm15%$ when including the candidate radio halos. Based on these numbers, we expect that there will be at least $183 pm 65$ radio halos found in the LoTSS survey in PSZ2 clusters, in agreement with predictions. The integrated flux densities for the radio halos were computed by fitting exponential models to the radio images. From these flux densities, we determine the cluster mass (M$_{500}$) and Compton Y parameter (Y$_{500}$) 150 MHz radio power (P$_{rm{150 MHz}}$) scaling relations for Planck PSZ2-detected radio halos. We find that the slopes of these relations are steeper than those determined from the 1.4 GHz radio powers. However, considering the uncertainties this is not a statistically significant result.
112 - L. Rudnick 2009
For over four decades, synchrotron-radiating sources have played a series of pathfinding roles in the study of galaxy clusters and large scale structure. Such sources are uniquely sensitive to the turbulence and shock structures of large-scale enviro nments, and their cosmic rays and magnetic fields often play important dynamic and thermodynamic roles. They provide essential complements to studies at other wavebands. Over the next decade, they will fill essential gaps in both cluster astrophysics and the cosmological growth of structure in the universe, especially where the signatures of shocks and turbulence, or even the underlying thermal plasma itself, are otherwise undetectable. Simultaneously, synchrotron studies offer a unique tool for exploring the fundamental question of the origins of cosmic magnetic fields. This work will be based on the new generation of m/cm-wave radio telescopes now in construction, as well as major advances in the sophistication of 3-D MHD simulations.
We will discuss here how structures observed in clusters of galaxies can provide us insight on the formation and evolution of these objects. We will focus primarily on X-ray observations and results from hydrodynamical $N$-body simulations. This pape r is based on a talk given at the School of Cosmology Jose Plinio Baptista -- `Cosmological perturbations and Structure Formation in Ubu/ES, Brazil.
To demonstrate the feasibility of studying the epoch of massive galaxy cluster formation in a more systematic manner using current and future galaxy surveys, we report the discovery of a large sample of proto-cluster candidates in the 1.62 deg^2 COSM OS/UltraVISTA field traced by optical/IR selected galaxies using photometric redshifts. By comparing properly smoothed 3D galaxy density maps of the observations and a set of matched simulations incorporating the dominant observational effects (galaxy selection and photometric redshift uncertainties), we first confirm that the observed ~15 comoving Mpc scale galaxy clustering is consistent with LCDM models. Using further the relation between high-z overdensity and the present day cluster mass calibrated in these matched simulations, we found 36 candidate structures at 1.6<z<3.1, showing overdensities consistent with the progenitors of M_z=0 ~10^15 M_sun clusters. Taking into account the significant upward scattering of lower mass structures, the probabilities for the candidates to have at least M_z=0 ~10^14 M_sun are ~70%. For each structure, about 15%-40% of photometric galaxy candidates are expected to be true proto-cluster members that will merge into a cluster-scale halo by z=0. With solely photometric redshifts, we successfully rediscover two spectroscopically confirmed structures in this field, suggesting that our algorithm is robust. This work generates a large sample of uniformly-selected proto-cluster candidates, providing rich targets for spectroscopic follow-up and subsequent studies of cluster formation. Meanwhile, it demonstrates the potential for probing early cluster formation with upcoming redshift surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and the Subaru Prime Focus Spectrograph survey.
We present the first observations of foreground Lyman-$alpha$ forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with $zsim 2.3-2.8$ within a $5 times 15$ region of the COSMOS field. The transverse sightline sepa ration is $sim 2,h^{-1}mathrm{Mpc}$ comoving, allowing us to create a tomographic reconstruction of the 3D Ly$alpha$ forest absorption field over the redshift range $2.20leq zleq 2.45$. The resulting map covers $6,h^{-1}mathrm{Mpc} times 14,h^{-1}mathrm{Mpc}$ in the transverse plane and $230,h^{-1}mathrm{Mpc}$ along the line-of-sight with a spatial resolution of $approx 3.5,h^{-1}mathrm{Mpc}$, and is the first high-fidelity map of large-scale structure on $simmathrm{Mpc}$ scales at $z>2$. Our map reveals significant structures with $gtrsim 10,h^{-1}mathrm{Mpc}$ extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. Simulated reconstructions with the same sightline sampling, spectral resolution, and signal-to-noise ratio recover the salient structures present in the underlying 3D absorption fields. Using data from other surveys, we identified 18 galaxies with known redshifts coeval with our map volume enabling a direct comparison to our tomographic map. This shows that galaxies preferentially occupy high-density regions, in qualitative agreement with the same comparison applied to simulations. Our results establishes the feasibility of the CLAMATO survey, which aims to obtain Ly$alpha$ forest spectra for $sim 1000$ SFGs over $sim 1 ,mathrm{deg}^2$ of the COSMOS field, in order to map out IGM large-scale structure at $langle z rangle sim 2.3$ over a large volume $(100,h^{-1}mathrm{Mpc})^3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا