ﻻ يوجد ملخص باللغة العربية
We study the $SU(2)_k$ Wess-Zumino-Novikov-Witten (WZNW) theory perturbed by the trace of the primary field in the adjoint representation, a theory governing the low-energy behaviour of a class of strongly correlated electronic systems. While the model is non-integrable, its dynamics can be investigated using the numerical technique of the truncated conformal spectrum approach combined with numerical and analytical renormalization groups (TCSA+RG). The numerical results so obtained provide support for a semiclassical analysis valid at $kgg 1$. Namely, we find that the low energy behavior is sensitive to the sign of the coupling constant, $lambda$. Moreover for $lambda>0$ this behavior depends on whether $k$ is even or odd. With $k$ even, we find definitive evidence that the model at low energies is equivalent to the massive $O(3)$ sigma model. For $k$ odd, the numerical evidence is more equivocal, but we find indications that the low energy effective theory is critical.
We investigate the infrared properties of SU(N)$_k$ conformal field theory perturbed by its adjoint primary field in 1+1 dimensions. The latter field theory is shown to govern the low-energy properties of various SU(N) spin chain problems. In particu
We revisit various topological issues concerning four-dimensional ungauged and gauged Wess-Zumino-Witten (WZW) terms for $SU$ and $SO$ quantum chromodynamics (QCD), from the modern bordism point of view. We explain, for example, why the definition of
We shall give an axiomatic construction of Wess-Zumino-Witten actions valued in (G=SU(N)), (Ngeq 3). It is realized as a functor ({WZ}) from the category of conformally flat four-dimensional manifolds to the category of line bundles with connection t
Recent experiments on twisted bilayer graphene have shown a high-temperature parent state with massless Dirac fermions and broken electronic flavor symmetry; superconductivity and correlated insulators emerge from this parent state at lower temperatu
We continue the study of the gl(1|1) Wess-Zumino-Witten model. The Knizhnik-Zamolodchikov equations for the one, two, three and four point functions are analyzed, for vertex operators corresponding to typical and projective representations. We illust