ﻻ يوجد ملخص باللغة العربية
We shall give an axiomatic construction of Wess-Zumino-Witten actions valued in (G=SU(N)), (Ngeq 3). It is realized as a functor ({WZ}) from the category of conformally flat four-dimensional manifolds to the category of line bundles with connection that satisfies, besides the axioms of a topological field theory, the axioms which abstract Wess-Zumino-Witten actions. To each conformally flat four-dimensional manifold (Sigma) with boundary (Gamma=partialSigma), a line bundle (L=WZ(Gamma)) with connection over the space (Gamma G) of mappings from (Gamma) to (G) is associated. The Wess-Zumino-Witten action is a non-vanishing horizontal section (WZ(Sigma)) of the pull back bundle (r^{ast}L) over (Sigma G) by the boundary restriction (r). (WZ(Sigma)) is required to satisfy a generalized Polyakov-Wiegmann formula with respect to the pointwise multiplication of the fields (Sigma G). Associated to the WZW-action there is a geometric descrption of extensions of the Lie group (Omega^3G) due to J. Mickelsson. In fact we shall construct two abelian extensions of (Omega^3G) that are in duality.
We revisit various topological issues concerning four-dimensional ungauged and gauged Wess-Zumino-Witten (WZW) terms for $SU$ and $SO$ quantum chromodynamics (QCD), from the modern bordism point of view. We explain, for example, why the definition of
We continue the study of the gl(1|1) Wess-Zumino-Witten model. The Knizhnik-Zamolodchikov equations for the one, two, three and four point functions are analyzed, for vertex operators corresponding to typical and projective representations. We illust
We consider the problem of the decomposition of the Renyi entanglement entropies in theories with a non-abelian symmetry by doing a thorough analysis of Wess-Zumino-Witten (WZW) models. We first consider $SU(2)_k$ as a case study and then generalise
A systematic description of the Wess-Zumino-Witten model is presented. The symplectic method plays the major role in this paper and also gives the relationship between the WZW model and the Chern-Simons model. The quantum theory is obtained to give t
Recent experiments on twisted bilayer graphene have shown a high-temperature parent state with massless Dirac fermions and broken electronic flavor symmetry; superconductivity and correlated insulators emerge from this parent state at lower temperatu