ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-induced semimetal to superconductor transition in a three-dimensional topological material ZrTe5

55   0   0.0 ( 0 )
 نشر من قبل Y.H. Zhou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As a new type of topological materials, ZrTe5 shows many exotic properties under extreme conditions. Utilizing resistance and ac magnetic susceptibility measurements under high pressure, while the resistance anomaly near 128 K is completely suppressed at 6.2 GPa, a fully superconducting transition emerges surprisingly. The superconducting transition temperature Tc increases with applied pressure, and reaches a maximum of 4.0 K at 14.6 GPa, followed by a slight drop but remaining almost constant value up to 68.5 GPa. At pressures above 21.2 GPa, a second superconducting phase with the maximum Tc of about 6.0 K appears and coexists with the original one to the maximum pressure studied in this work. In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopy combined with theoretical calculations indicate the observed two-stage superconducting behavior is correlated to the structural phase transition from ambient Cmcm phase to high-pressure C2/m phase around 6 GPa, and to a mixture of two high-pressure phases of C2/m and P-1 above 20 GPa. The combination of structure, transport measurement and theoretical calculations enable a complete understanding of the emerging exotic properties in three-dimensional topological materials happened under extreme environments.

قيم البحث

اقرأ أيضاً

228 - L. P. He , Y. T. Jia , S. J. Zhang 2015
The recently discovered Dirac and Weyl semimetals are new members of topological materials. Starting from them, topological superconductivity may be achieved, e.g. by carrier doping or applying pressure. Here we report high-pressure resistance and X- ray diffraction study of the three-dimensional topological Dirac semimetal Cd3As2. Superconductivity with Tc ~ 2.0 K is observed at 8.5 GPa. The Tc keeps increasing to about 4.0 K at 21.3 GPa, then shows a nearly constant pressure dependence up to the highest pressure 50.9 GPa. The X-ray diffraction measurements reveal a structure phase transition around 3.5 GPa. Our observation of superconductivity in pressurized topological Dirac semimetal Cd3As2 provides a new candidate for topological superconductor, as argued in a recent point contact study and a theoretical work.
Topological superconductivity with Majorana bound states, which are critical to implement nonabelian quantum computation, may be realized in three-dimensional semimetals with nontrivial topological feature, when superconducting transition occurs in t he bulk. Here, we report pressure-induced superconductivity in a transition-metal dipnictide NbAs2. The emergence of superconductivity is not accompanied by any structural phase transition up to the maximum experimental pressure of 29.8 GPa, as supported by pressure-dependent synchrotron X-ray diffraction and Raman spectroscopy. Intriguingly, the Raman study reveals rapid phonon mode hardening and broadening above 10 GPa, in coincident with the superconducting transition. Using first principle calculations, we determine Fermi surface change induced by pressure, which steadily increases the density of states without breaking the electron-hole compensation. Noticeably, the main hole pocket of NbAs2 encloses one time-reversal-invariant momenta of the monoclinic lattice, suggesting NbAs2 as a candidate of topological superconductors.
Recently monolayer jacutingaite (Pt2HgSe3), a naturally occurring exfoliable mineral, discovered in Brazil in 2008, has been theoretically predicted as a candidate quantum spin Hall system with a 0.5 eV band gap, while the bulk form is one of only a few known dual-topological insulators which may host different surface states protected by symmetries. In this work, we systematically investigate both structure and electronic evolution of bulk Pt2HgSe3 under high pressure up to 96 GPa. The nontrivial topology persists up to the structural phase transition observed in the high-pressure regime. Interestingly, we found that this phase transition is accompanied by the appearance of superconductivity at around 55 GPa and the critical transition temperature Tc increases with applied pressure. Our results demonstrate that Pt2HgSe3 with nontrivial topology of electronic states displays new ground states upon compression and raises potentials in application to the next-generation spintronic devices.
257 - Tao Li , Ke Wang , Chunqiang Xu 2019
Very recently, NiTe2 has been reported to be a type II Dirac semimetal with Dirac nodes near the Fermi surface. Furthermore, it is unveiled that NiTe2 presents the Hall Effect, which is ascribed to orbital magnetoresistance. The physical properties b ehavior of NiTe2 under high pressure attracts us. In this paper, we investigate the electrical properties of polycrystalline NiTe2 by application of pressure ranging from 3.4GPa to 54.45Gpa. Superconductivity emerges at critical pressure 12GPa with a transition temperature of 3.7K, and Tc reaches its maximum, 6.4 K, at the pressure of 52.8GPa. Comparing with the superconductivity in MoP, we purposed the possibility of topological superconductivity in NiTe2. Two superconductivity transitions are observed with pressure increasing in single crystal.
A rapid and anisotropic modification of the Fermi-surface shape can be associated with abrupt changes in crystalline lattice geometry or in the magnetic state of a material. In this study we show that such an electronic topological transition is at t he basis of the formation of an unusual pressure-induced tetragonal ferromagnetic phase in Fe$_{1.08}$Te. Around 2 GPa, the orthorhombic and incommensurate antiferromagnetic ground-state of Fe$_{1.08}$Te is transformed upon increasing pressure into a tetragonal ferromagnetic state via a conventional first-order transition. On the other hand, an isostructural transition takes place from the paramagnetic high-temperature state into the ferromagnetic phase as a rare case of a `type 0 transformation with anisotropic properties. Electronic-structure calculations in combination with electrical resistivity, magnetization, and x-ray diffraction experiments show that the electronic system of Fe$_{1.08}$Te is instable with respect to profound topological transitions that can drive fundamental changes of the lattice anisotropy and the associated magnetic order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا