ﻻ يوجد ملخص باللغة العربية
In this paper we study the ultraviolet and infrared behaviour of the self energy of a point-like charge in the vector and scalar Lee-Wick electrodynamics in a $d+1$ dimensional space time. It is shown that in the vector case, the self energy is strictly ultraviolet finite up to $d=3$ spatial dimensions, finite in the renormalized sense for any $d$ odd, infrared divergent for $d=2$ and ultraviolet divergent for $d>2$ even. On the other hand, in the scalar case, the self energy is striclty finite for $dleq 3$, and finite, in the renormalized sense, for any $d$ odd.
The Lee-Wick electrodynamics in the vicinity of a conducting plate is investigated. The propagator for the gauge field is calculated and the interaction between the plate and a point-like electric charge is computed. The boundary condition imposed on
We propose a type of non-anticommutative superspace, with the interesting property of relating to Lee-Wick type of higher derivatives theories, which are known for their interesting properties, and have lead to proposals of phenomenologicaly viable h
Most discussions of propagators in Lee-Wick theories focus on the presence of two massive complex conjugate poles in the propagator. We show that there is in fact only one pole near the physical region, or in another representation three pole-like st
We construct a modification of the standard model which stabilizes the Higgs mass against quadratically divergent radiative corrections, using ideas originally discussed by Lee and Wick in the context of a finite theory of quantum electrodynamics. Th
We propose a new axiom system for unitary quantum field theories on curved space-time backgrounds, by postulating that the partition function and the correlators extend analytically to a certain domain of complex-valued metrics. Ordinary Riemannian m