ﻻ يوجد ملخص باللغة العربية
We construct a modification of the standard model which stabilizes the Higgs mass against quadratically divergent radiative corrections, using ideas originally discussed by Lee and Wick in the context of a finite theory of quantum electrodynamics. The Lagrangian includes new higher derivative operators. We show that the higher derivative terms can be eliminated by introducing a set of auxiliary fields; this allows for convenient computation and makes the physical interpretation more transparent. Although the theory is unitary, it does not satisfy the usual analyticity conditions.
Recently an extension of the standard model (the Lee-Wick standard model) based on ideas of Lee and Wick (LW) was introduced. It does not contain quadratic divergences in the Higgs mass and hence solves the hierarchy puzzle. The LW-standard model con
Within the framework of the Lee Wick Standard Model (LWSM) we investigate Higgs pair production $gg to h_0 h_0$, $gg to h_0 tilde p_0$ and top pair production $gg to bar tt$ at the Large Hadron Collider (LHC), where the neutral particles from the Hig
We demonstrate that amplitudes describing scattering of longitudinally polarized massive vector bosons present in non-Abelian Lee-Wick gauge theory do not grow with energy and, hence, satisfy the constraints imposed by perturbative unitarity. This re
Lee-Wick-like scalar model near a Dirichlet plate is considered in this work. The modified propagator for the scalar field due to the presence of a Dirichlet boundary is computed, and the interaction between the plate and a point-like scalar charge i
In quantum mechanics the deterministic property of classical physics is an emergent phenomenon appropriate only on macroscopic scales. Lee and Wick introduced Lorentz invariant quantum theories where causality is an emergent phenomenon appropriate fo