ترغب بنشر مسار تعليمي؟ اضغط هنا

DeepBox: Learning Objectness with Convolutional Networks

69   0   0.0 ( 0 )
 نشر من قبل Weicheng Kuo
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing object proposal approaches use primarily bottom-up cues to rank proposals, while we believe that objectness is in fact a high level construct. We argue for a data-driven, semantic approach for ranking object proposals. Our framework, which we call DeepBox, uses convolutional neural networks (CNNs) to rerank proposals from a bottom-up method. We use a novel four-layer CNN architecture that is as good as much larger networks on the task of evaluating objectness while being much faster. We show that DeepBox significantly improves over the bottom-up ranking, achieving the same recall with 500 proposals as achieved by bottom-up methods with 2000. This improvement generalizes to categories the CNN has never seen before and leads to a 4.5-point gain in detection mAP. Our implementation achieves this performance while running at 260 ms per image.

قيم البحث

اقرأ أيضاً

547 - Weiyu Guo , Jiabin Ma , Liang Wang 2019
As deep neural networks are increasingly used in applications suited for low-power devices, a fundamental dilemma becomes apparent: the trend is to grow models to absorb increasing data that gives rise to memory intensive; however low-power devices a re designed with very limited memory that can not store large models. Parameters pruning is critical for deep model deployment on low-power devices. Existing efforts mainly focus on designing highly efficient structures or pruning redundant connections for networks. They are usually sensitive to the tasks or relay on dedicated and expensive hashing storage strategies. In this work, we introduce a novel approach for achieving a lightweight model from the views of reconstructing the structure of convolutional kernels and efficient storage. Our approach transforms a traditional square convolution kernel to line segments, and automatically learn a proper strategy for equipping these line segments to model diverse features. The experimental results indicate that our approach can massively reduce the number of parameters (pruned 69% on DenseNet-40) and calculations (pruned 59% on DenseNet-40) while maintaining acceptable performance (only lose less than 2% accuracy).
We train generative up-convolutional neural networks which are able to generate images of objects given object style, viewpoint, and color. We train the networks on rendered 3D models of chairs, tables, and cars. Our experiments show that the network s do not merely learn all images by heart, but rather find a meaningful representation of 3D models allowing them to assess the similarity of different models, interpolate between given views to generate the missing ones, extrapolate views, and invent new objects not present in the training set by recombining training instances, or even two different object classes. Moreover, we show that such generative networks can be used to find correspondences between different objects from the dataset, outperforming existing approaches on this task.
Advancements in convolutional neural networks (CNNs) have made significant strides toward achieving high performance levels on multiple object recognition tasks. While some approaches utilize information from the entire scene to propose regions of in terest, the task of interpreting a particular region or object is still performed independently of other objects and features in the image. Here we demonstrate that a scenes gist can significantly contribute to how well humans can recognize objects. These findings are consistent with the notion that humans foveate on an object and incorporate information from the periphery to aid in recognition. We use a biologically inspired two-part convolutional neural network (GistNet) that models the fovea and periphery to provide a proof-of-principle demonstration that computational object recognition can significantly benefit from the gist of the scene as contextual information. Our model yields accuracy improvements of up to 50% in certain object categories when incorporating contextual gist, while only increasing the original model size by 5%. This proposed model mirrors our intuition about how the human visual system recognizes objects, suggesting specific biologically plausible constraints to improve machine vision and building initial steps towards the challenge of scene understanding.
Roof falls due to geological conditions are major safety hazards in mining and tunneling industries, causing lost work times, injuries, and fatalities. Several large-opening limestone mines in the Eastern and Midwestern United States have roof fall p roblems caused by high horizontal stresses. The typical hazard management approach for this type of roof fall hazard relies heavily on visual inspections and expert knowledge. In this study, we propose an artificial intelligence (AI) based system for the detection roof fall hazards caused by high horizontal stresses. We use images depicting hazardous and non-hazardous roof conditions to develop a convolutional neural network for autonomous detection of hazardous roof conditions. To compensate for limited input data, we utilize a transfer learning approach. In transfer learning, an already-trained network is used as a starting point for classification in a similar domain. Results confirm that this approach works well for classifying roof conditions as hazardous or safe, achieving a statistical accuracy of 86%. However, accuracy alone is not enough to ensure a reliable hazard management system. System constraints and reliability are improved when the features being used by the network are understood. Therefore, we used a deep learning interpretation technique called integrated gradients to identify the important geologic features in each image for prediction. The analysis of integrated gradients shows that the system mimics expert judgment on roof fall hazard detection. The system developed in this paper demonstrates the potential of deep learning in geological hazard management to complement human experts, and likely to become an essential part of autonomous tunneling operations in those cases where hazard identification heavily depends on expert knowledge.
159 - Wei Shen , Rujie Liu 2018
Conventionally, convolutional neural networks (CNNs) process different images with the same set of filters. However, the variations in images pose a challenge to this fashion. In this paper, we propose to generate sample-specific filters for convolut ional layers in the forward pass. Since the filters are generated on-the-fly, the model becomes more flexible and can better fit the training data compared to traditional CNNs. In order to obtain sample-specific features, we extract the intermediate feature maps from an autoencoder. As filters are usually high dimensional, we propose to learn a set of coefficients instead of a set of filters. These coefficients are used to linearly combine the base filters from a filter repository to generate the final filters for a CNN. The proposed method is evaluated on MNIST, MTFL and CIFAR10 datasets. Experiment results demonstrate that the classification accuracy of the baseline model can be improved by using the proposed filter generation method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا