ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Scene Gist with Convolutional Neural Networks to Improve Object Recognition

79   0   0.0 ( 0 )
 نشر من قبل Kevin Wu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Advancements in convolutional neural networks (CNNs) have made significant strides toward achieving high performance levels on multiple object recognition tasks. While some approaches utilize information from the entire scene to propose regions of interest, the task of interpreting a particular region or object is still performed independently of other objects and features in the image. Here we demonstrate that a scenes gist can significantly contribute to how well humans can recognize objects. These findings are consistent with the notion that humans foveate on an object and incorporate information from the periphery to aid in recognition. We use a biologically inspired two-part convolutional neural network (GistNet) that models the fovea and periphery to provide a proof-of-principle demonstration that computational object recognition can significantly benefit from the gist of the scene as contextual information. Our model yields accuracy improvements of up to 50% in certain object categories when incorporating contextual gist, while only increasing the original model size by 5%. This proposed model mirrors our intuition about how the human visual system recognizes objects, suggesting specific biologically plausible constraints to improve machine vision and building initial steps towards the challenge of scene understanding.



قيم البحث

اقرأ أيضاً

Convolutional Neural Networks (CNN) have demon- strated its successful applications in computer vision, speech recognition, and natural language processing. For object recog- nition, CNNs might be limited by its strict label requirement and an implic it assumption that images are supposed to be target- object-dominated for optimal solutions. However, the labeling procedure, necessitating laying out the locations of target ob- jects, is very tedious, making high-quality large-scale dataset prohibitively expensive. Data augmentation schemes are widely used when deep networks suffer the insufficient training data problem. All the images produced through data augmentation share the same label, which may be problematic since not all data augmentation methods are label-preserving. In this paper, we propose a weakly supervised CNN framework named Multiple Instance Learning Convolutional Neural Networks (MILCNN) to solve this problem. We apply MILCNN framework to object recognition and report state-of-the-art performance on three benchmark datasets: CIFAR10, CIFAR100 and ILSVRC2015 classification dataset.
Accurate perception of the surrounding scene is helpful for robots to make reasonable judgments and behaviours. Therefore, developing effective scene representation and recognition methods are of significant importance in robotics. Currently, a large body of research focuses on developing novel auxiliary features and networks to improve indoor scene recognition ability. However, few of them focus on directly constructing object features and relations for indoor scene recognition. In this paper, we analyze the weaknesses of current methods and propose an Object-to-Scene (OTS) method, which extracts object features and learns object relations to recognize indoor scenes. The proposed OTS first extracts object features based on the segmentation network and the proposed object feature aggregation module (OFAM). Afterwards, the object relations are calculated and the scene representation is constructed based on the proposed object attention module (OAM) and global relation aggregation module (GRAM). The final results in this work show that OTS successfully extracts object features and learns object relations from the segmentation network. Moreover, OTS outperforms the state-of-the-art methods by more than 2% on indoor scene recognition without using any additional streams. Code is publicly available at: https://github.com/FreeformRobotics/OTS.
Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most t exture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The d facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Binary Patterns encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Our final combination outperforms the state-of-the-art without employing fine-tuning or ensemble of RGB network architectures.
118 - Xiaofei Li , Zhong Dong 2021
Inspired by the conclusion that humans choose the visual cortex regions corresponding to the real size of an object to analyze its features when identifying objects in the real world, this paper presents a framework, SizeNet, which is based on both t he real sizes and features of objects to solve object recognition problems. SizeNet was used for object recognition experiments on the homemade Rsize dataset, and was compared with the state-of-the-art methods AlexNet, VGG-16, Inception V3, Resnet-18, and DenseNet-121. The results showed that SizeNet provides much higher accuracy rates for object recognition than the other algorithms. SizeNet can solve the two problems of correctly recognizing objects with highly similar features but real sizes that are obviously different from each other, and correctly distinguishing a target object from interference objects whose real sizes are obviously different from the target object. This is because SizeNet recognizes objects based not only on their features, but also on their real size. The real size of an object can help exclude the interference objects categories whose real size ranges do not match the real size of the object, which greatly reduces the objects categories number in the label set used for the downstream object recognition based on object features. SizeNet is of great significance for studying the interpretable computer vision. Our code and dataset will thus be made public.
159 - Wei Shen , Rujie Liu 2018
Conventionally, convolutional neural networks (CNNs) process different images with the same set of filters. However, the variations in images pose a challenge to this fashion. In this paper, we propose to generate sample-specific filters for convolut ional layers in the forward pass. Since the filters are generated on-the-fly, the model becomes more flexible and can better fit the training data compared to traditional CNNs. In order to obtain sample-specific features, we extract the intermediate feature maps from an autoencoder. As filters are usually high dimensional, we propose to learn a set of coefficients instead of a set of filters. These coefficients are used to linearly combine the base filters from a filter repository to generate the final filters for a CNN. The proposed method is evaluated on MNIST, MTFL and CIFAR10 datasets. Experiment results demonstrate that the classification accuracy of the baseline model can be improved by using the proposed filter generation method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا