ترغب بنشر مسار تعليمي؟ اضغط هنا

The Influence of Galaxy Environment on the Stellar Initial Mass Function of Early-Type Galaxies

270   0   0.0 ( 0 )
 نشر من قبل Giulio Rosani
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate whether the stellar initial mass function of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environment through the group catalogue of Wang et al. and used their optical SDSS spectra to constrain the IMF slope, through the analysis of IMF-sensitive spectral indices. To reach a high enough signal-to-noise ratio, we have stacked spectra in velocity dispersion ($sigma_0$) bins, on top of separating the sample by galaxy hierarchy and host halo mass, as proxies for galaxy environment. In order to constrain the IMF, we have compared observed line strengths to predictions of MIUSCAT/EMILES synthetic stellar population models, with varying age, metallicity, and bimodal (low-mass tapered) IMF slope ($rm Gamma_b$). Consistent with previous studies, we find that $rm Gamma_b$ increases with $sigma_0$, becoming bottom-heavy (i.e. an excess of low-mass stars with respect to the Milky-Way-like IMF) at high $sigma_0$. We find that this result is robust against the set of isochrones used in the stellar population models, as well as the way the effect of elemental abundance ratios is taken into account. We thus conclude that it is possible to use currently state-of-the-art stellar population models and intermediate resolution spectra to consistently probe IMF variations. For the first time, we show that there is no dependence of $Gamma_b$ on environment or galaxy hierarchy, as measured within the $3$ SDSS fibre, thus leaving the IMF as an intrinsic galaxy property, possibly set already at high redshift.



قيم البحث

اقرأ أيضاً

204 - T.Treu 2009
We determine an absolute calibration of the initial mass function (IMF) of early-type galaxies, by studying a sample of 56 gravitational lenses identified by the SLACS Survey. Under the assumption of standard Navarro, Frenk & White dark matter halos, a combination of lensing, dynamical, and stellar population synthesis models is used to disentangle the stellar and dark matter contribution for each lens. We define an IMF mismatch parameter alpha=M*(L+D)/M*(SPS) as the ratio of stellar mass inferred by a joint lensing and dynamical models (M*(L+D)) to the current stellar mass inferred from stellar populations synthesis models (M*(SPS)). We find that a Salpeter IMF provides stellar masses in agreement with those inferred by lensing and dynamical models (<log alpha>=0.00+-0.03+-0.02), while a Chabrier IMF underestimates them (<log alpha>=0.25+-0.03+-0.02). A tentative trend is found, in the sense that alpha appears to increase with galaxy velocity dispersion. Taken at face value, this result would imply a non universal IMF, perhaps dependent on metallicity, age, or abundance ratios of the stellar populations. Alternatively, the observed trend may imply non-universal dark matter halos with inner density slope increasing with velocity dispersion. While the degeneracy between the two interpretations cannot be broken without additional information, the data imply that massive early-type galaxies cannot have both a universal IMF and universal dark matter halos.
We extend our initial study of the connection between the UV colour of galaxies and both the inferred stellar mass-to-light ratio, $Upsilon_*$, and a mass-to-light ratio referenced to Salpeter initial mass function (IMF) models of the same age and me tallicity, $Upsilon_*/Upsilon_{Sal}$, using new UV magnitude measurements for a much larger sample of early-type galaxies, ETGs, with dynamically determined mass-to-light ratios. We confirm the principal empirical finding of our first study, a strong correlation between the GALEX FUV-NUV colour and $Upsilon_*$. We show that this finding is not the result of spectral distortions limited to a single passband (eg. metallicity-dependent line-blanketing in the NUV band), or of the analysis methodology used to measure $Upsilon_*$, or of the inclusion or exclusion of the correction for stellar population effects as accounted for using $Upsilon_*/Upsilon_{Sal}$. The sense of the correlation is that galaxies with larger $Upsilon_*$, or larger $Upsilon_*/Upsilon_{Sal}$, are bluer in the UV. We conjecture that differences in the low mass end of the stellar initial mass function, IMF, are related to the nature of the extreme horizontal branch stars generally responsible for the UV flux in ETGs. If so, then UV color can be used to identify ETGs with particular IMF properties and to estimate $Upsilon_*$. We also demonstrate that UV colour can be used to decrease the scatter about the Fundamental Plane and Manifold, and to select peculiar galaxies for follow-up with which to further explore the cause of variations in $Upsilon_*$ and UV colour.
The observed stellar initial mass function (IMF) appears to vary, becoming bottom-heavy in the centres of the most massive, metal-rich early-type galaxies. It is still unclear what physical processes might cause this IMF variation. In this paper, we demonstrate that the abundance of deuterium in the birth clouds of forming stars may be important in setting the IMF. We use models of disc accretion onto low-mass protostars to show that those forming from deuterium-poor gas are expected to have zero-age main sequence masses significantly lower than those forming from primordial (high deuterium fraction) material. This deuterium abundance effect depends on stellar mass in our simple models, such that the resulting IMF would become bottom-heavy - as seen in observations. Stellar mass loss is entirely deuterium-free and is important in fuelling star formation across cosmic time. Using the EAGLE simulation we show that stellar mass loss-induced deuterium variations are strongest in the same regions where IMF variations are observed: at the centres of the most massive, metal-rich, passive galaxies. While our analysis cannot prove that the deuterium abundance is the root cause of the observed IMF variation, it sets the stage for future theoretical and observational attempts to study this possibility.
The stellar initial mass function (IMF) seems to be variable and not universal, as argued in the literature in the last three decades. Several relations among the low-mass end of the IMF slope and other stellar population, photometric or kinematic pa rameters of massive early-type galaxies (ETGs) have been proposed, but a consolidated agreement on a factual cause of the observed variations has not been reached yet. We investigate the relations between the IMF and other stellar population parameters in NGC 3311, the central galaxy of the Hydra I cluster. NGC 3311 is characterized by old and metal-rich stars, like other massive ETGs, but has unusual increasing stellar velocity dispersion and [$alpha/$Fe] profiles. We use spatially resolved MUSE observations to obtain stellar population properties using Bayesian full-spectrum fitting in the central part of NGC 3311 to compare the IMF slope against other stellar parameters with the goal of assessing their relations/dependencies. For NGC 3311, we unambiguously invalidate the previously observed direct correlation between the IMF slope and the local stellar velocity dispersion, confirming some doubts already raised in the literature. This relation may arise as a spatial coincidence only, between the region with the largest stellar velocity dispersion, with that where the oldest, $textit{in situ}$ population is found and dominates. We also show robust evidence that the proposed IMF-metallicity relation is contaminated by the degeneracy between these two parameters. The tightest correlations we found are those between stellar age and IMF and between galactocentric radius and IMF. The variation of the IMF is not due to kinematical, dynamical, or global properties in NGC 3311. We speculate that IMF might be dwarf-dominated in the red-nuggets formed at high redshifts that ended up being the central cores of todays giant ellipticals. [Abridged]
Using optical-optical and optical-NIR colors, we analyze the radial dependence of age and metallicity inside massive (M* > 10^10.5 MSun), low-redshift (z<0.1), early-type galaxies (ETGs), residing in both high-density group regions and the field. On average, internal color gradients of ETGs are mainly driven by metallicity, consistent with previous studies. However, we find that group galaxies feature positive age gradients, Nabla_t, i.e. a younger stellar population in the galaxy center, and steeper metallicity gradients, compared to the field sample, whose Nabla_t ranges from negative in lower mass galaxies, to positive gradients at higher mass. These dependencies yield new constraints to models of galaxy formation and evolution. We speculate that age and metallicity gradients of group ETGs result from (either gas-rich or minor-dry) mergers and/or cold-gas accretion, while field ETGs exhibit the characteristic flatter gradients expected from younger, more metal-rich, stars formed inside--out by later gas-cooling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا