ﻻ يوجد ملخص باللغة العربية
Identifying the superconducting (SC) gap structure of the iron-based high-temperature superconductors (Fe-HTSs) remains a key issue for the understanding of superconductivity in these materials. In contrast to other unconventional superconductors, in the Fe-HTSs both $d$-wave and extended s-wave pairing symmetries are close in energy, with the latter believed to be generally favored over the former. Probing the proximity between these very different SC states and identifying experimental parameters that can tune them, are of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth (lambda) in the optimally doped Fe-HTS Ba_0.65Rb_0.35Fe_2As_2. At ambient pressure this material is known to be a nodeless s-wave superconductor. Upon pressure a strong decrease of (lambda) is observed, while the SC transition temperature remains nearly constant. More importantly, the low-temperature behavior of (1/lambda^{2}) changes from exponential saturation at zero pressure to a power-law with increasing pressure, providing unambiguous evidence that hydrostatic pressure promotes nodal SC gaps. Comparison to microscopic models favors a d-wave over a nodal s^{+-}-wave pairing as the origin of the nodes. Our results provide a new route of understanding the complex topology of the SC gap in Fe-HTSs.
We report field-orientation specific heat studies of the pressure-induced heavy fermion superconductor CeRhIn5. Theses experiments provide the momentum-dependent superconducting gap function for the first time in any pressure-induced superconductor.
Identifying the symmetry of the wave function describing the Cooper pairs is pivotal in understanding the origin of high-temperature superconductivity in iron-based superconductors. Despite nearly a decade of intense investigation, the answer to this
The in-plane thermal conductivity of iron-based superconductor RbFe$_2$As$_2$ single crystal ($T_c approx$ 2.1 K) was measured down to 100 mK. In zero field, the observation of a significant residual linear term $kappa_0/T$ = 0.65 mW K$^{-2}$ cm$^{-1
We have investigated the superconducting gap of optimally doped Ba(Fe$_{0.65}$Ru$_{0.35}$)$_2$As$_2$ by angle-resolved photoemission spectroscopy (APRES) using bulk-sensitive 7 eV laser and synchrotron radiation. It was found that the gap is isotropi
The thermal conductivity of iron-based superconductor CsFe$_2$As$_2$ single crystal ($T_c =$ 1.81 K) was measured down to 50 mK. A significant residual linear term $kappa_0/T$ = 1.27 mW K$^{-2}$ cm$^{-1}$ is observed in zero magnetic field, which is