ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual nodal behaviors of the superconducting gap in the iron-based superconductor Ba(Fe$_{0.65}$Ru$_{0.35}$)$_2$As$_2$: Effects of spin-orbit coupling

71   0   0.0 ( 0 )
 نشر من قبل Kozo Okazaki
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the superconducting gap of optimally doped Ba(Fe$_{0.65}$Ru$_{0.35}$)$_2$As$_2$ by angle-resolved photoemission spectroscopy (APRES) using bulk-sensitive 7 eV laser and synchrotron radiation. It was found that the gap is isotropic in the $k_x$-$k_y$ plane both on the electron and hole Fermi surfaces (FSs). The gap magnitudes of two resolved hole FSs show similar $k_z$ dependences and decrease as $k_z$ approaches $sim$ 2$pi$/$c$ (i.e., around the Z point) unlike the other Fe-based superconductors reported so far, where the superconducting gap of only one hole FS shows a strong $k_z$ dependence. This unique gap structure can be understood in the scenario that the $d_{z^2}$ orbital character is mixed into both hole FSs due to the finite spin-orbit coupling between almost degenerate FSs and is reproduced by calculations within the random phase approximation including the spin-orbit coupling.

قيم البحث

اقرأ أيضاً

550 - X. C. Hong , X. L. Li , B. Y. Pan 2013
The thermal conductivity of iron-based superconductor CsFe$_2$As$_2$ single crystal ($T_c =$ 1.81 K) was measured down to 50 mK. A significant residual linear term $kappa_0/T$ = 1.27 mW K$^{-2}$ cm$^{-1}$ is observed in zero magnetic field, which is about 1/10 of the normal-state value in upper critical field $H_{c2}$. In low magnetic field, $kappa_0/T$ increases rapidly with field. The overall field dependence of $kappa_0/T$ for our CsFe$_2$As$_2$ (with residual resistivity $rho_0$ = 1.80 $muOmega$ cm) lies between the dirty KFe$_2$As$_2$ (with $rho_0$ = 3.32 $muOmega$ cm) and the clean KFe$_2$As$_2$ (with $rho_0$ = 0.21 $muOmega$ cm). These results strongly suggest nodal superconducting gap in CsFe$_2$As$_2$, similar to its sister compound KFe$_2$As$_2$.
106 - N. Xu , P. Richard , X.-P. Wang 2012
We used high-energy resolution angle-resolved photoemission spectroscopy to extract the momentum dependence of the superconducting gap of Ru-substituted Ba(Fe$_{0.75}$Ru$_{0.25}$)$_2$As$_2$ ($T_c = 15$ K). Despite a strong out-of-plane warping of the Fermi surface, the magnitude of the superconducting gap observed experimentally is nearly isotropic and independent of the out-of-plane momentum. More precisely, we respectively observed 5.7 meV and 4.5 meV superconducting gaps on the inner and outer $Gamma$-centered hole Fermi surface pockets, whereas a 4.8 meV gap is recorded on the M-centered electron Fermi surface pockets. Our results are consistent with the $J_1-J_2$ model with a dominant antiferromagnetic exchange interaction between the next-nearest Fe neighbors.
High-quality K(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals have been grown by using KAs flux method. Instead of increasing the superconducting transition temperature $T_{rm c}$ through electron doping, we find that Co impurities rapidly suppress $T_{ rm c}$ down to zero at only $x approx$ 0.04. Such an effective suppression of $T_{rm c}$ by impurities is quite different from that observed in Ba$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ with multiple nodeless superconducting gaps. Thermal conductivity measurements in zero field show that the residual linear term $kappa_0/T$ only change slightly with $3.4%$ Co doping, despite the sharp increase of scattering rate. The implications of these anomalous impurity effects are discussed.
The precise momentum dependence of the superconducting gap in the iron-arsenide superconductor with Tc = 32K (BKFA) was determined from angle-resolved photoemission spectroscopy (ARPES) via fitting the distribution of the quasiparticle density to a m odel. The model incorporates finite lifetime and experimental resolution effects, as well as accounts for peculiarities of BKFA electronic structure. We have found that the value of the superconducting gap is practically the same for the inner Gamma-barrel, X-pocket, and blade-pocket, and equals 9 meV, while the gap on the outer Gamma-barrel is estimated to be less than 4 meV, resulting in 2Delta/kT_c=6.8 for the large gap, and 2Delta/kT_c<3 for the small gap. A large (77 pm 3%) non-superconducting component in the photoemission signal is observed below T_c. Details of gap extraction from ARPES data are discussed in Appendix.
131 - Swee K. Goh , Y. Nakai , K. Ishida 2010
Magnetic measurements on optimally doped single crystals of BaFe$_2$(As$_{1-x}$P$_{x}$)$_2$ ($xapprox0.35$) with magnetic fields applied along different crystallographic axes were performed under pressure, enabling the pressure evolution of coherence lengths and the anisotropy factor to be followed. Despite a decrease in the superconducting critical temperature, our studies reveal that the superconducting properties become more anisotropic under pressure. With appropriate scaling, we directly compare these properties with the values obtained for BaFe$_2$(As$_{1-x}$P$_{x}$)$_2$ as a function of phosphorus content.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا