ﻻ يوجد ملخص باللغة العربية
The Parkes Galactic All-Sky Survey (GASS) is a survey of Galactic atomic hydrogen (HI) emission in the Southern sky covering declinations $delta leq 1^{circ}$ using the Parkes Radio Telescope. The survey covers $2pi$ steradians with an effective angular resolution of ~16, at a velocity resolution of 1.0 km/s, and with an rms brightness temperature noise of 57 mK. GASS is the most sensitive, highest angular resolution survey of Galactic HI emission ever made in the Southern sky. In this paper we outline the survey goals, describe the observations and data analysis, and present the first-stage data release. The data product is a single cube at full resolution, not corrected for stray radiation. Spectra from the survey and other data products are publicly available online.
The Galactic All-Sky Survey is a survey of Galactic atomic hydrogen emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release (GASS I) concerned survey goals and observing techniques, the second release (GASS
LOFAR is the only radio telescope that is presently capable of high-sensitivity, high-resolution (<1 mJy/b and <15) observations at ultra-low frequencies (<100 MHz). To utilise these capabilities, the LOFAR Surveys Key Science Project is undertaking
The LOFAR Two-metre Sky Survey (LoTSS) is a deep 120-168 MHz imaging survey that will eventually cover the entire Northern sky. Each of the 3170 pointings will be observed for 8 hrs, which, at most declinations, is sufficient to produce ~5arcsec reso
We present the MUSE-Wide survey, a blind, 3D spectroscopic survey in the CANDELS/GOODS-S and CANDELS/COSMOS regions. Each MUSE-Wide pointing has a depth of 1 hour and hence targets more extreme and more luminous objects over 10 times the area of the
We present the S-Band Polarization All Sky Survey (S-PASS), a survey of polarized radio emission over the southern sky at Dec~$< -1^circ$ taken with the Parkes radio telescope at 2.3~GHz. The main aim was to observe at a frequency high enough to avoi