ترغب بنشر مسار تعليمي؟ اضغط هنا

Khovanov homotopy type, Burnside category, and products

178   0   0.0 ( 0 )
 نشر من قبل Sucharit Sarkar
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we give a new construction of a Khovanov homotopy type. We show that this construction gives a space stably homotopy equivalent to the Khovanov homotopy types constructed in [LS14a] and [HKK] and, as a corollary, that those two constructions give equivalent spaces. We show that the construction behaves well with respect to disjoint unions, connected sums and mirrors, verifying several conjectures from [LS14a]. Finally, combining these results with computations from [LS14c] and the refined s-invariant from [LS14b] we obtain new results about the slice genera of certain knots.



قيم البحث

اقرأ أيضاً

In this note we present a combinatorial link invariant that underlies some recent stable homotopy refinements of Khovanov homology of links. The invariant takes the form of a functor between two combinatorial 2-categories, modulo a notion of stable e quivalence. We also develop some general properties of such functors.
For each link L in S^3 and every quantum grading j, we construct a stable homotopy type X^j_o(L) whose cohomology recovers Ozsvath-Rasmussen-Szabos odd Khovanov homology, H_i(X^j_o(L)) = Kh^{i,j}_o(L), following a construction of Lawson-Lipshitz-Sark ar of the even Khovanov stable homotopy type. Furthermore, the odd Khovanov homotopy type carries a Z/2 action whose fixed point set is a desuspension of the even Khovanov homotopy type. We also construct a Z/2 action on an even Khovanov homotopy type, with fixed point set a desuspension of X^j_o(L).
Given a grid diagram for a knot or link K in $S^3$, we construct a spectrum whose homology is the knot Floer homology of K. We conjecture that the homotopy type of the spectrum is an invariant of K. Our construction does not use holomorphic geometry, but rather builds on the combinatorial definition of grid homology. We inductively define models for the moduli spaces of pseudo-holomorphic strips and disk bubbles, and patch them together into a framed flow category. The inductive step relies on the vanishing of an obstruction class that takes values in a complex of positive domains with partitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا