ﻻ يوجد ملخص باللغة العربية
The three dimensional (3D) topological insulators are predicted to exhibit a 3D Dirac semimetal state in critical regime of topological to trivial phase transition. Here we demonstrate the first experimental evidence of 3D Dirac semimetal state in topological insulator Bi2Se3 with bulk carrier concentration of ~ 10^19 cm^{-3}, using magneto-transport measurements. At low temperatures, the resistivity of our Bi2Se3 crystal exhibits clear Shubnikov-de Haas (SdH) oscillations above 6T. The analysis of these oscillations through Lifshitz-Onsanger and Lifshitz-Kosevich theory reveals a non-trivial pi Berry phase coming from 3D bands, which is a decisive signature of 3D Dirac semimetal state. The large value of Dingle temperature and natural selenium vacancies in our crystal suggest that the observed 3D Dirac semimetal state is an outcome of enhanced strain field and weaker effective spin-orbit coupling.
We have performed high-resolution angle-resolved photoemission spectroscopy of ternary pnictide CaAuAs which is predicted to be a three-dimensional topological Dirac semimetal (TDS). By accurately determining the bulk-band structure, we have revealed
Graphene, a two dimensional (2D) carbon sheet, acquires many of its amazing properties from the Dirac point nature of its electronic structures with negligible spin-orbit coupling. Extending to 3D space, graphene networks with negative curvature, cal
Previously known three-dimensional Dirac semimetals (DSs) occur in two types -- topological DSs and nonsymmorphic DSs. Here we present a novel three-dimensional DS that exhibits both features of the topological and nonsymmorphic DSs. We introduce a m
The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals ho
Massless Dirac electrons in condensed matter have attracted considerable attention. Unlike conventional electrons, Dirac electrons are described in the form of two-component wave functions. In the surface state of topological insulators, these two co