ﻻ يوجد ملخص باللغة العربية
Massless Dirac electrons in condensed matter have attracted considerable attention. Unlike conventional electrons, Dirac electrons are described in the form of two-component wave functions. In the surface state of topological insulators, these two components are associated with the spin degrees of freedom, hence governing the magnetic properties. Therefore, the observation of the two-component wave function provides a useful clue for exploring the novel spin phenomena. Here we show that the two-component nature is manifested in the Landau levels (LLs) whose degeneracy is lifted by a Coulomb potential. Using spectroscopic-imaging scanning tunneling microscopy, we visualize energy and spatial structures of LLs in a topological insulator Bi2Se3. The observed potential-induced LL splitting and internal structures of Landau orbits are distinct from those in a conventional electron system and are well reproduced by a two-component model Dirac Hamiltonian. Our model further predicts non-trivial energy-dependent spin-magnetization textures in a potential variation. This provides a way to manipulate spins in the topological surface state.
We investigate Dirac fermions on the surface of the topological insulator Bi2Se3 using scanning tunneling spectroscopy. Landau levels (LLs) are observed in the tunneling spectra in a magnetic field. In contrast to LLs of conventional electrons, a fie
The three dimensional (3D) topological insulators are predicted to exhibit a 3D Dirac semimetal state in critical regime of topological to trivial phase transition. Here we demonstrate the first experimental evidence of 3D Dirac semimetal state in to
The wavefunction of massless Dirac fermions is a two-component spinor. In graphene, a one-atom-thick film showing two-dimensional Dirac-like electronic excitations, the two-component representation reflects the amplitude of the electron wavefunction
The intense search for topological superconductivity is inspired by the prospect that it hosts Majorana quasiparticles. We explore in this work the optimal design for producing topological superconductivity by combining a quantum Hall state with an o
Recently, Weyl semimetals have been experimentally discovered in both inversion-symmetry-breaking and time-reversal-symmetry-breaking crystals. The non-trivial topology in Weyl semimetals can manifest itself with exotic phenomena which have been exte