ﻻ يوجد ملخص باللغة العربية
We propose a practical quantum cryptographic scheme which combines high information capacity, such as provided by high-dimensional quantum entanglement, with the simplicity of a two-dimensional Clauser-Horne-Shimony-Holt (CHSH) Bell test for security verification. By applying a state combining entanglement in a two-dimensional degree of freedom, such as photon polarization, with high-dimensional correlations in another degree of freedom, such as photon orbital angular momentum (OAM) or path, the scheme provides a considerably simplified route towards security verification in quantum key distribution (QKD) aimed at exploiting high-dimensional quantum systems for increased secure key rates. It also benefits from security against collective attacks and is feasible using currently available technologies.
Most Quantum Key Distribution protocols use a two-dimensional basis such as HV polarization as first proposed by Bennett and Brassard in 1984. These protocols are consequently limited to a key generation density of 1 bit per photon. We increase this
Quantum key distribution (QKD) is one of the most important subjects in quantum information theory. There are two kinds of QKD protocols, prepare-measure protocols and entanglement-based protocols. For long-distance communications in noisy environmen
Quantum key distribution(QKD) is an important area in quantum information theory. Nowadays, there are many protocols such as BB84 protocol, Lo-Chaus protocol and GR10 protocol. They usually require legitimated parties have the ability to create parti
We introduce a novel time-frequency quantum key distribution (TFQKD) scheme based on photon pairs entangled in these two conjugate degrees of freedom. The scheme uses spectral detection and phase modulation to enable measurements in the temporal basi
Measurement-device-independent quantum key distribution (MDI-QKD) is proved to be able to eliminate all potential detector side channel attacks. Combining with the reference frame independent (RFI) scheme, the complexity of practical system can be re