ﻻ يوجد ملخص باللغة العربية
Measurement-device-independent quantum key distribution (MDI-QKD) is proved to be able to eliminate all potential detector side channel attacks. Combining with the reference frame independent (RFI) scheme, the complexity of practical system can be reduced because of the unnecessary alignment for reference frame. Here, based on polarization multiplexing, we propose a time-bin encoding structure, and experimentally demonstrate the RFI-MDI-QKD protocol. Thanks to this, two of the four Bell states can be distinguished, whereas only one is used to generate the secure key in previous RFI-MDI-QKD experiments. As far as we know, this is the first demonstration for RFI-MDI-QKD protocol with clock rate of 50 MHz and distance of more than hundred kilometers between legitimate parties Alice and Bob. In asymptotic case, we experimentally compare RFI-MDI-QKD protocol with the original MDI-QKD protocol at the transmission distance of 160 km, when the different misalignments of the reference frame are deployed. By considering observables and statistical fluctuations jointly, four-intensity decoy-state RFI-MDI-QKD protocol with biased bases is experimentally achieved at the transmission distance of 100km and 120km. The results show the robustness of our scheme, and the key rate of RFI-MDI-QKD can be improved obviously under a large misalignment of the reference frame.
Reference-frame-independent measurement-device-independent quantum key distribution (RFI-MDI-QKD) is a novel protocol which eliminates all possible attacks on detector side and necessity of reference-frame alignment in source sides. However, its perf
Reference-frame-independent quantum key distribution (RFI QKD) protocol can reduce the requirement on the alignment of reference frames in practical systems. However, comparing with the Bennett-Brassard (BB84) QKD protocol, the main drawback of RFI Q
The measurement-device-independent (MDI) QKD is considered to be an alternative to overcome the currently trusted satellite paradigm. However, the feasibility of the space-based MDI-QKD remains unclear in terms of the factors: the high-loss uplink be
Measurement-device-independent quantum key distribution (MDIQKD) is a revolutionary protocol since it is physically immune to all attacks on the detection side. However, the protocol still keeps the strict assumptions on the source side that the four
Device-independent quantum key distribution aims to provide key distribution schemes whose security is based on the laws of quantum physics but which does not require any assumptions about the internal working of the quantum devices used in the proto