ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging the square of the correlated two-electron wave function of a hydrogen molecule

252   0   0.0 ( 0 )
 نشر من قبل Markus Waitz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

قيم البحث

اقرأ أيضاً

231 - K. Kokko , A. Nagy , J. Huhtala 2020
Using a hydrogen molecule as a test system we demonstrate how to compute the effective potential according to the formalism of the new density functional theory (DFT), in which the basic variable is the set of spherically averaged densities instead o f the total density, used in the traditional DFT. The effective potential together the external potential, nuclear Coulomb potential, can be substituted in the Schrodinger like differential equation to obtain the spherically averaged electron density of the system. In the new method instead of one three-dimensional low symmetry equation one has to solve as many spherically symmetric equations as there are atoms in the system.
429 - M. Waitz , D. Metz , J. Lower 2016
We investigate the photo-doubleionization of $H_2$ molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. In contrast , the quasi-particle consisting of both electrons (i.e. the dielectron) does. The work highlights the fact that non-local effects are embedded everywhere in nature where many-particle processes are involved.
89 - Fan Jia , Zhichao Guo , Lintao Li 2020
We demonstrate detection of NaRb Feshbach molecules at high magnetic field by combining molecular photodissociation and absorption imaging of the photofragments. The photodissociation process is carried out via a spectroscopically selected hyperfine Zeeman level correlated with the Na ($3P_{3/2}$) + Rb ($5S_{1/2}$) asymptote which, following spontaneous emission and optical pumping, leads to ground-state atoms in a single level with near unity probability. Subsequent to the dissociation, the number of molecules is obtained by detecting the resultant $^{23}$Na and $^{87}$Rb atoms. We have also studied the heating effect caused by the photodissociation process and optimized the detection protocol for extracting the temperature of the molecular cloud. This method enables the $in~situ$ detection of fast time scale collision dynamics between NaRb Feshbach molecules and will be a valuable capability in studying few-body physics involving molecules.
251 - M. Ya. Amusia 2006
We demonstrate rather interesting manifestations of co-existence of resonance features in characteristics of the photoionization of 3d-electrons in Xe@C60. It is shown that the reflection of photoelectrons produced by the 3d Xe photoionization affect s greatly partial photoionization cross-sections of and levels and respective angular anisotropy parameters, both dipole and non-dipole adding to all of them additional maximums and minimums. The calculations are performed treating the 3/2 and 5/2 electrons as electrons of different kinds with their spins up and down. The effect of C60 shell is accounted for in the frame of the orange skin potential model.
216 - Kasra Amini , Jens Biegert 2020
Knowledge of molecular structure is paramount in understanding, and ultimately influencing, chemical reactivity. For nearly a century, diffractive imaging has been used to identify the structures of many biologically-relevant gas-phase molecules with atomic (i.e. Angstrom, A; 1 A = 10$^{-10}$ m) spatial resolution. Unravelling the mechanisms of chemical reactions requires the capability to record multiple well-resolved snapshots of the molecular structure as it is evolving on the nuclear (i.e. femtosecond, fs; 1 fs = 10$^{-15}$ s) timescale. We present the latest, state-of-the-art ultrafast electron diffraction methods used to retrieve the molecular structure of gas-phase molecules with Angstrom and femtosecond spatio-temporal resolution. We first provide a historical and theoretical background to elastic electron scattering in its application to structural retrieval, followed by details of field-free and field-dressed ultrafast electron diffraction techniques. We discuss the application of these ultrafast methods to time-resolving chemical reactions in real-time, before providing a future outlook of the field and the challenges that exist today and in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا