ترغب بنشر مسار تعليمي؟ اضغط هنا

Combinatorial approach to bulk detector material engineering: Application to rapid NaI performance optimization via multi-element doping/co-doping strategy

44   0   0.0 ( 0 )
 نشر من قبل Ivan Khodyuk
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Historically, the discovery and optimization of doped bulk materials has been predominantly developed through an Edisonian approach. While successful and despite the constant progress in fundamental understanding of detector materials physics, the process has been restricted by its inherent slow pace and low success rate. This poor throughput owes largely to the considerable compositional space that needs to be accounted for to fully comprehend complex material/performance relationship. Here, we present a combinatorial approach where doped bulk scintillator materials can be rapidly optimized for their properties through concurrent extrinsic doping/co-doping strategies. The concept that makes use of Design of Experiment, rapid growth and evaluation techniques, and multivariable regression analysis, has been successfully applied to the engineering of NaI performance, a historical but mediocre performer in scintillation detection. Using this approach, we identified a three-element doping/co-doping strategy that significantly improves the material performance. The composition was uncovered by simultaneously screening for a beneficial co-dopant ion among the alkaline earth metal family and by optimizing its concentration and that of Tl+ and Eu2+ ions. The composition with the best performance was identified as 0.1% mol Tl+, 0.1% mol Eu2+ and 0.2% mol Ca2+. This formulation shows enhancement of energy resolution and light output at 662 keV, from 6.3 to 4.9%, and from 44,000 to 52,000 ph/MeV, respectively. The method, in addition to improving NaI performance, provides a versatile framework for rapidly unveiling complex and concealed correlations between material composition and performance, and should be broadly applicable to optimization of other material properties.

قيم البحث

اقرأ أيضاً

Ge with a quasi-direct band gap can be realized by strain engineering, alloying with Sn, or ultrahigh n-type doping. In this work, we use all three approaches together to fabricate direct-band-gap Ge-Sn alloys. The heavily doped n-type Ge-Sn is reali zed with CMOS-compatible nonequilibrium material processing. P is used to form highly doped n-type Ge-Sn layers and to modify the lattice parameter of P-doped Ge-Sn alloys. The strain engineering in heavily-P-doped Ge-Sn films is confirmed by x-ray diffraction and micro Raman spectroscopy. The change of the band gap in P-doped Ge-Sn alloy as a function of P concentration is theoretically predicted by density functional theory and experimentally verified by near-infrared spectroscopic ellipsometry. According to the shift of the absorption edge, it is shown that for an electron concentration greater than 1x10^20 cm-3 the band-gap renormalization is partially compensated by the Burstein-Moss effect. These results indicate that Ge-based materials have high potential for use in near-infrared optoelectronic devices, fully compatible with CMOS technology.
Superconducting properties of Co-co-doped (Ca,RE)FeAs2 ((Ca,RE)112: RE = La, Pr) were investigated. Co-co-doping increased Tc of (Ca,Pr)112 while Mn-co-doping suppressed superconductivity of (Ca,RE)112. Co-co-doped (Ca,La)112 showed large diamagnetic screening and sharper superconducting transition than Co-free (Ca,La)112. Tczero observed in resistivity measurements increased from 14 K to 30 K by Co-co-doping, while Tconset was not increased. The critical current density (Jc) of Co-co-doped (Ca,La)112 were approximately 2.1 x 104 Acm-2 and 3.2 x 103 Acm-2 at 2 K and 25 K, respectively, near zero field. These relatively high Jcs and large diamagnetic screening observed in susceptibility measurement as for polycrystalline bulks suggest bulk superconductivity of Co-co-doped (Ca,RE)112 compounds.
Multi-material structural topology and shape optimization problems are formulated within a phase field approach. First-order conditions are stated and the relation of the necessary conditions to classical shape derivatives are discussed. An efficient numerical method based on an $H^1$-gradient projection method is introduced and finally several numerical results demonstrate the applicability of the approach.
The p-type doping efficiency of 4H silicon carbide (4H-SiC) is rather low due to the large ionization energies of p-type dopants. Such an issue impedes the exploration of the full advantage of 4H-SiC for semiconductor devices. In this letter, we show that co-doping group-IVB elements effectively decreases the ionization energy of the most widely used p-type dopant, i. e., aluminum (Al), through the Coulomb repulsion between the energy levels of group-IVB elements and that of Al in 4H-SiC. Among group-IVB elements Ti has the most prominent effectiveness. Ti decreases the ionization energy of Al by nearly 50%, leading to a value as low as ~ 0.13 eV. As a result, the ionization rate of Al with Ti co-doping is up to ~ 5 times larger than that without co-doping at room temperature when the doping concentration is up to 1018 cm-3. This work may encourage the experimental co-doping of group-IB elements such as Ti and Al to significantly improve the p-type doping efficiency of 4H-SiC.
Ga2O3 is being actively explored for high-power and high-temperature electronics, deep-ultraviolet optoelectronics, and other applications. Efficient n-type doping of Ga2O3 has been achieved, but p-type doping faces fundamental obstacles due to compe nsation, deep acceptor levels, and the polaron transport mechanism of free holes. However, aside from achieving p-type conductivity, plenty of opportunity exists to engineer the position of the Fermi level for improved design of Ga2O3 based devices. We use first-principles defect theory and defect equilibrium calculations to simulate a 3-step growth-annealing-quench synthesis protocol for hydrogen assisted Mg doping in beta-Ga2O3, taking into account the gas phase equilibrium between H2, O2 and H2O, which determines the H chemical potential. We predict Ga2O3 doping-type conversion to a net p-type regime after growth under reducing conditions in the presence of H2 followed by O-rich annealing, which is a similar process to the Mg acceptor activation by H removal in GaN. For equilibrium annealing there is an optimal temperature that maximizes the Ga2O3 net acceptor density for a given Mg doping level, which is further increased in the non-equilibrium annealing scenario without re-equilibration. After quenching to operating temperature, the Ga2O3 Fermi level drops below mid-gap down to about +1.5 eV above the valence band maximum, creating a significant number of uncompensated neutral MgGa0 acceptors. The Fermi level reduction down to +1.5 eV and suppression of free electron density in this doping type converted (NA > ND) Ga2O3 material is of significance and impact for the design of Ga2O3 power electronics devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا