ترغب بنشر مسار تعليمي؟ اضغط هنا

Computational Fermi level engineering and doping-type conversion of Ga2O3 via three-step synthesis process

307   0   0.0 ( 0 )
 نشر من قبل Anuj Goyal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ga2O3 is being actively explored for high-power and high-temperature electronics, deep-ultraviolet optoelectronics, and other applications. Efficient n-type doping of Ga2O3 has been achieved, but p-type doping faces fundamental obstacles due to compensation, deep acceptor levels, and the polaron transport mechanism of free holes. However, aside from achieving p-type conductivity, plenty of opportunity exists to engineer the position of the Fermi level for improved design of Ga2O3 based devices. We use first-principles defect theory and defect equilibrium calculations to simulate a 3-step growth-annealing-quench synthesis protocol for hydrogen assisted Mg doping in beta-Ga2O3, taking into account the gas phase equilibrium between H2, O2 and H2O, which determines the H chemical potential. We predict Ga2O3 doping-type conversion to a net p-type regime after growth under reducing conditions in the presence of H2 followed by O-rich annealing, which is a similar process to the Mg acceptor activation by H removal in GaN. For equilibrium annealing there is an optimal temperature that maximizes the Ga2O3 net acceptor density for a given Mg doping level, which is further increased in the non-equilibrium annealing scenario without re-equilibration. After quenching to operating temperature, the Ga2O3 Fermi level drops below mid-gap down to about +1.5 eV above the valence band maximum, creating a significant number of uncompensated neutral MgGa0 acceptors. The Fermi level reduction down to +1.5 eV and suppression of free electron density in this doping type converted (NA > ND) Ga2O3 material is of significance and impact for the design of Ga2O3 power electronics devices.

قيم البحث

اقرأ أيضاً

We report on the growth and characterization of Ge-doped b{eta}-Ga2O3 thin films using a solid germanium source. b{eta}-Ga2O3 thin films were grown using a low-pressure chemical vapor deposition (LPCVD) reactor with either an oxygen or gallium delive ry tube. Films were grown on 6 degree offcut sapphire and (010) b{eta}-Ga2O3 substrates with growth rates between 0.5 - 22 {mu}m/hr. By controlling the germanium vapor pressure, a wide range of Hall carrier concentrations between 10^17 - 10^19 cm-3 were achieved. Low-temperature Hall data revealed a difference in donor incorporation depending on the reactor configuration. At low growth rates, germanium occupied a single donor energy level between 8 - 10 meV. At higher growth rates, germanium doping predominantly results in a deeper donor energy level at 85 meV. This work shows the effect of reactor design and growth regime on the kinetics of impurity incorporation. Studying donor incorporation in b{eta}-Ga2O3 is important for the design of high-power electronic devices.
Ge with a quasi-direct band gap can be realized by strain engineering, alloying with Sn, or ultrahigh n-type doping. In this work, we use all three approaches together to fabricate direct-band-gap Ge-Sn alloys. The heavily doped n-type Ge-Sn is reali zed with CMOS-compatible nonequilibrium material processing. P is used to form highly doped n-type Ge-Sn layers and to modify the lattice parameter of P-doped Ge-Sn alloys. The strain engineering in heavily-P-doped Ge-Sn films is confirmed by x-ray diffraction and micro Raman spectroscopy. The change of the band gap in P-doped Ge-Sn alloy as a function of P concentration is theoretically predicted by density functional theory and experimentally verified by near-infrared spectroscopic ellipsometry. According to the shift of the absorption edge, it is shown that for an electron concentration greater than 1x10^20 cm-3 the band-gap renormalization is partially compensated by the Burstein-Moss effect. These results indicate that Ge-based materials have high potential for use in near-infrared optoelectronic devices, fully compatible with CMOS technology.
We report on a new method for graphene synthesis and assessment of the properties of the resulting large-area graphene layers. Graphene was produced by the high pressure - high temperature growth from the natural graphitic source by utilizing the mol ten Fe-Ni catalysts for dissolution of carbon. The resulting large-area graphene flakes were transferred to the silicon - silicon oxide substrates for the spectroscopic micro-Raman and scanning electron microscopy inspection. The analysis of the G peak, D, T+D and 2D bands in the Raman spectra under the 488-nm laser excitation indicate that the high pressure - high temperature technique is capable of producing the high-quality large-area single-layer graphene with a low defect density. The proposed method may lead to a more reliable graphene synthesis and facilitate its purification and chemical doping.
MnBi2Te4 and MnBi4Te7 are intrinsic antiferromagnetic topological insulators, offering a promising materials platform for realizing exotic topological quantum states. However, high densities of intrinsic defects in these materials not only cause bulk metallic conductivity, preventing the measurement of quantum transport in surface states, but may also affect magnetism and topological properties. In this paper, we show by density functional theory calculations that the strain induced by the internal heterostructure promotes the formation of large-size-mismatched antisite defect BiMn in MnBi2Te4; such strain is further enhanced in MnBi4Te7, giving rise to even higher BiMn density. The abundance of intrinsic BiMn donors results in degenerate n-type conductivity under the Te-poor growth condition. Our calculations suggest that growths in a Te-rich condition can lower the Fermi level, which is supported by our transport measurements. We further show that the internal strain can also enable efficient doping by large-size-mismatched substitutional NaMn acceptors, which can compensate BiMn donors and lower the Fermi level. Na doping may pin the Fermi level inside the bulk band gap even at the Te-poor limit in MnBi2Te4. Furthermore, facile defect formation in MnSb2Te4 and its implication in Sb doping in MnBi2Te4 as well as the defect segregation in MnBi4Te7 are discussed. The defect engineering and doping strategies proposed in this paper will stimulate further studies for improving synthesis and for manipulating magnetic and topological properties in MnBi2Te4, MnBi4Te7, and related compounds.
Scalable substitutional doping of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is a prerequisite to developing next-generation logic and memory devices based on 2D materials. To date, doping efforts are still nascent. Here, we report scalable growth and vanadium (V) doping of 2D WSe2 at front-end-of-line (FEOL) and back-end-of-line (BEOL) compatible temperatures of 800 {deg}C and 400 {deg}C, respectively. A combination of experimental and theoretical studies confirm that vanadium atoms substitutionally replace tungsten in WSe2, which results in p-type doping via the introduction of discrete defect levels that lie close to the valence band maxima. The p-type nature of the V dopants is further verified by constructed field-effect transistors, where hole conduction becomes dominant with increasing vanadium concentration. Hence, our study presents a method to precisely control the density of intentionally introduced impurities, which is indispensable in the production of electronic-grade wafer-scale extrinsic 2D semiconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا