ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling of dual-metal Schottky contacts based silicon micro and nano wire solar cells

43   0   0.0 ( 0 )
 نشر من قبل M Golam Rabbani
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study solar cell properties of single silicon wires connected at their ends to two dissimilar metals of different work functions. Effects of wire dimensions, the work functions of the metals, and minority carrier lifetimes on short circuit current as well as open circuit voltage are studied. The most efficient photovoltaic behavior is found to occur when one metal makes a Schottky contact with the wire, and the other makes an Ohmic contact. As wire length increases, both short circuit current and open circuit voltage increase before saturation occurs. Depending on the work function difference between the metals and the wire dimensions, the saturation length increases by approximately an order of magnitude with a two order magnitude increase in minority carrier length. However current per surface area exposed to light is found to decrease rapidly with increase in length. The use of a multi-contact interdigitated design for long wires is investigated to increase the photovoltaic response of the devices.

قيم البحث

اقرأ أيضاً

Two-dimensional semiconductors are excellent candidates for next-generation electronics and optoelec-tronics thanks to their electrical properties and strong light-matter interaction. To fabricate devices with optimal electrical properties, it is cru cial to have both high-quality semiconducting crystals and ideal con-tacts at metal-semiconductor interfaces. Thanks to the mechanical exfoliation of van der Waals crystals, atomically-thin high-quality single-crystals can easily be obtained in a laboratory. However, conventional metal deposition techniques can introduce chemical disorder and metal-induced mid-gap states that induce Fermi level pinning and can degrade the metal-semiconductor interfaces, resulting in poorly performing devices. In this article, we explore the electrical contact characteristics of Au-InSe and graphite-InSe van der Waals contacts, obtained by stacking mechanically exfoliated InSe flakes onto pre-patterned Au or graphite electrodes without the need of lithography or metal deposition. The high quality of the metal-semiconductor interfaces obtained by van der Waals contact allows to fabricate high-quality Schottky di-odes based on the Au-InSe Schottky barrier. Our experimental observation indicates that the contact barrier at the graphite-InSe interface is negligible due to the similar electron affinity of InSe and graphite, while the Au-InSe interfaces are dominated by a large Schottky barrier.
70 - S. Krompiewski 2007
In this study, a model of a Schottky-barrier carbon nanotube field- effect transistor (CNT-FET), with ferromagnetic contacts, has been developed. The emphasis is put on analysis of current-voltage characteristics as well as shot (and thermal) noise. The method is based on the tight-binding model and the non- equilibrium Greens function technique. The calculations show that, at room temperature, the shot noise of the CNT FET is Poissonian in the sub-threshold region, whereas in elevated gate and drain/source voltage regions the Fano factor gets strongly reduced. Moreover, transport properties strongly depend on relative magnetization orientations in the source and drain contacts. In particular, one observes quite a large tunnel magnetoresistance, whose absolute value may exceed 50%.
The observed performances of carbon nanotube field effect transistors are examined using first-principles quantum transport calculations. We focus on the nature and role of the electrical contact of Au and Pd electrodes to open-ended semiconducting n anotubes, allowing the chemical contact at the surface to fully develop through large-scale relaxation of the contacting atomic configuration. We present the first direct numerical evidence of Pd contacts exhibiting perfect transparency for hole injection as opposed to that of Au contacts. Their respective Schottky barrier heights, on the other hand, turn out to be fairly similar for realistic contact models. These findings are in general agreement with experimental data reported to date, and show that a Schottky contact is not merely a passive ohmic contact but actively influences the device I-V behavior.
We discuss the high-bias electrical characteristics of back-gated field-effect transistors with CVD-synthesized bilayer MoS2 channel and Ti Schottky contacts. We find that oxidized Ti contacts on MoS2 form rectifying junctions with ~0.3 to 0.5 eV Sch ottky barrier height. To explain the rectifying output characteristics of the transistors, we propose a model based on two slightly asymmetric back-to-back Schottky barriers, where the highest current arises from image force barrier lowering at the electrically forced junction, while the reverse current is due to Schottky-barrier limited injection at the grounded junction. The device achieves a photo responsivity greater than 2.5 AW-1 under 5 mWcm-2 white-LED light. By comparing two- and four-probe measurements, we demonstrate that the hysteresis and persistent photoconductivity exhibited by the transistor are peculiarities of the MoS2 channel rather than effects of the Ti/MoS2 interface.
We present the optoelectronic characterization of two graphene/silicon Schottky junctions, fabricated by transferring CVD-graphene on flat and nanotip-patterned n-Si substrates, respectively. We demonstrate record photo responsivity, exceeding 2.5 A/ W under white light, which we attribute to the contribution of charges photogenerated in the surrounding region of the flat junction or to the internal gain by impact ionization caused by the enhanced field on the nanotips.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا