ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of anomalous diffusion in iron mononitride thin films

167   0   0.0 ( 0 )
 نشر من قبل Mukul Gupta
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the origin of a counter intuitive diffusion behavior of Fe and N atoms in a iron mononitride (FeN) thin film. It was observed that in-spite of a larger atomic size, Fe tend to diffuse more rapidly than smaller N atoms. This only happens in the N-rich region of Fe-N phase diagram, in the N-poor regions, N diffusion coefficient is orders of magnitude larger than Fe. Detailed self-diffusion measurements performed in FeN thin films reveal that the diffusion mechanism of Fe and N is different - Fe atoms diffuse through a complex process, which in addition to a volume diffusion, pre-dominantly controlled by a fast grain boundary diffusion. On the other hand N atoms diffuse through a classical volume-type diffusion process. Observed results have been explained in terms of stronger Fe-N (than Fe-Fe) bonds generally predicted theoretically for mononitride compositions of transition metals.



قيم البحث

اقرأ أيضاً

177 - T. Golod , A. Rydh , 2011
We study Hall effect in sputtered NixPt1-x thin films with different Ni concentrations. Temperature, magnetic field and angular dependencies are analyzed and the phase diagram of NiPt thin films is obtained. It is found that films with sub-critical N i concentration exhibit cluster-glass behavior at low temperatures with a perpendicular magnetic anisotropy below the freezing temperature. Films with over-critical Ni concentration are ferromagnetic with parallel anisotropy. At the critical concentration the state of the film is strongly frustrated. Such films demonstrate canted magnetization with the easy axis rotating as a function of temperature. The magnetism appears via consecutive paramagnetic - cluster glass - ferromagnetic transitions, rather than a single second-order phase transition. But most remarkably, the extraordinary Hall effect changes sign at the critical concentration. We suggest that this is associated with a reconstruction of the electronic structure of the alloy at the normal metal - ferromagnet quantum phase transition.
Ag/Fe/Ag and Cr/Fe/Cr trilayers with a single $25 nm$ thick ferromagnetic layer exhibit giant magnetoresistance (GMR) type behavior. The resistance decreases for parallel and transversal magnetic field alignements with a Langevin-type magnetic field dependence up to B=12 T. The phenomenon is explained by a granular interface structure. Results on Fe/Ag multilayers are also interpreted in terms of a granular interface magnetoresistance.
Terahertz time-domain conductivity measurements in 2 to 100 nm thick iron films resolve the femtosecond time delay between applied electric fields and resulting currents. This response time decreases for thinner metal films. The macroscopic response time depends on the mean and the variance of the distribution of microscopic momentum relaxation times of the conducting electrons. Comparing the recorded response times with DC-conductivities demonstrates increasing variance of the microscopic relaxation times with increasing film thickness. At least two electron species contribute to conduction in bulk with substantially differing relaxation times. The different electron species are affected differently by the confinement because they have different mean free paths.
We present experimental control of the magnetic anisotropy in a gadolinium iron garnet (GdIG) thin film from in-plane to perpendicular anisotropy by simply changing the sample temperature. The magnetic hysteresis loops obtained by SQUID magnetometry measurements unambiguously reveal a change of the magnetically easy axis from out-of-plane to in-plane depending on the sample temperature. Additionally, we confirm these findings by the use of temperature dependent broadband ferromagnetic resonance spectroscopy (FMR). In order to determine the effective magnetization, we utilize the intrinsic advantage of FMR spectroscopy which allows to determine the magnetic anisotropy independent of the paramagnetic substrate, while magnetometry determines the combined magnetic moment from film and substrate. This enables us to quantitatively evaluate the anisotropy and the smooth transition from in-plane to perpendicular magnetic anisotropy. Furthermore, we derive the temperature dependent $g$-factor and the Gilbert damping of the GdIG thin film.
We report on the formation of the dilute $Pd_{1-x}Fe_x$ compositions with tunable magnetic properties under an ion-beam implantation of epitaxial Pd thin films. Binary $Pd_{1-x}Fe_x$ alloys with a mean iron content $x$ of $0.025$, $0.035$ or $0.075$ were obtained by the implantation of $40 keV$ $Fe^+$ ions into the palladium films on MgO (001) substrate to the doses of $0.5cdot10^{16}, 1.0cdot10^{16}$ and $3.0cdot10^{16}$ $ions/cm^2$, respectively. Structural and magnetic studies have shown that iron atoms occupy regular fcc-lattice Pd-sites without the formation of any secondary crystallographic phase. All the iron implanted Pd films reveal ferromagnetism at low temperatures (below $200 K$) with both the Curie temperature and saturation magnetization determined by the implanted iron dose. In contrast to the magnetic properties of the molecular beam epitaxy grown $Pd_{1-x}Fe_x$ alloy films with the similar iron contents, the Fe-implanted Pd films possess weaker in-plane magnetocrystalline anisotropy, and, accordingly, a lower coercivity. The observed multiple ferromagnetic resonances in the implanted $Pd_{1-x}Fe_x$ films indicate a formation of a magnetically inhomogeneous state due to spinodal decomposition into regions, presumably layers, with identical crystal symmetry but different iron contents. The multiphase magnetic structure is robust with respect to the vacuum annealing at $770 K$, though develops towards well-defined local $Pd-Fe$ compositions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا