ترغب بنشر مسار تعليمي؟ اضغط هنا

Compute-and-Forward Can Buy Secrecy Cheap

93   0   0.0 ( 0 )
 نشر من قبل Parisa Babaheidarian
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a Gaussian multiple access channel with $K$ transmitters, a (intended) receiver and an external eavesdropper. The transmitters wish to reliably communicate with the receiver while concealing their messages from the eavesdropper. This scenario has been investigated in prior works using two different coding techniques; the random i.i.d. Gaussian coding and the signal alignment coding. Although, the latter offers promising results in a very high SNR regime, extending these results to the finite SNR regime is a challenging task. In this paper, we propose a new lattice alignment scheme based on the compute-and-forward framework which works at any finite SNR. We show that our achievable secure sum rate scales with $log(mathrm{SNR})$ and hence, in most SNR regimes, our scheme outperforms the random coding scheme in which the secure sum rate does not grow with power. Furthermore, we show that our result matches the prior work in the infinite SNR regime. Additionally, we analyze our result numerically.



قيم البحث

اقرأ أيضاً

We present a modified compute-and-forward scheme which utilizes Channel State Information at the Transmitters (CSIT) in a natural way. The modified scheme allows different users to have different coding rates, and use CSIT to achieve larger rate regi on. This idea is applicable to all systems which use the compute-and-forward technique and can be arbitrarily better than the regular scheme in some settings.
Simultaneous wireless information and power transfer (SWIPT) has recently gathered much research interest from both academia and industry as a key enabler of energy harvesting Internet-of-things (IoT) networks. Due to a number of growing use cases of such networks, it is important to study their performance limits from the perspective of physical layer security (PLS). With this intent, this work aims to provide a novel analysis of the ergodic secrecy capacity of a SWIPT system is provided for Rician and Nakagami-m faded communication links. For a realistic evaluation of the system, the imperfections of channel estimations for different receiver designs of the SWIPT-based IoT systems have been taken into account. Subsequently, the closedform expressions of the ergodic secrecy capacities for the considered scenario are provided and, then, validated through extensive simulations. The results indicate that an error ceiling appears due to imperfect channel estimation at high values of signal-to-noise ratio (SNR). More importantly, the secrecy capacity under different channel conditions stops increasing beyond a certain limit, despite an increase of the main link SNR. The in-depth analysis of secrecy-energy trade-off has also been performed and a comparison has been provided for imperfect and perfect channel estimation cases. As part of the continuous evolution of IoT networks, the results provided in this work can help in identifying the secrecy limits of IoT networks in the presence of multiple eavesdroppers.
Compute-and-Forward is an emerging technique to deal with interference. It allows the receiver to decode a suitably chosen integer linear combination of the transmitted messages. The integer coefficients should be adapted to the channel fading state. Optimizing these coefficients is a Shortest Lattice Vector (SLV) problem. In general, the SLV problem is known to be prohibitively complex. In this paper, we show that the particular SLV instance resulting from the Compute-and-Forward problem can be solved in low polynomial complexity and give an explicit deterministic algorithm that is guaranteed to find the optimal solution.
Lattice codes used under the Compute-and-Forward paradigm suggest an alternative strategy for the standard Gaussian multiple-access channel (MAC): The receiver successively decodes integer linear combinations of the messages until it can invert and r ecover all messages. In this paper, a multiple-access technique called CFMA (Compute-Forward Multiple Access) is proposed and analyzed. For the two-user MAC, it is shown that without time-sharing, the entire capacity region can be attained using CFMA with a single-user decoder as soon as the signal-to-noise ratios are above $1+sqrt{2}$. A partial analysis is given for more than two users. Lastly the strategy is extended to the so-called dirty MAC where two interfering signals are known non-causally to the two transmitters in a distributed fashion. Our scheme extends the previously known results and gives new achievable rate regions.
Physarum Polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by biologists to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foragi ng two food sources s0 and s1. We prove that, under this model, the mass of the mold will eventually converge to the shortest s0 - s1 path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by the biologists and can be seen as an example of a natural algorithm, that is, an algorithm developed by evolution over millions of years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا