ترغب بنشر مسار تعليمي؟ اضغط هنا

Why a NESSiE-like experiment at SBL is needed?

87   0   0.0 ( 0 )
 نشر من قبل Laura Pasqualini
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Laura Pasqualini




اسأل ChatGPT حول البحث

The NESSiE experiment is designed to perform an accurate measurement of muon-neutrino disappearance at small L/E, in order to severely constrain models with more than three-standard neutrinos, or even determine for the first time the presence of a new kind of neutrino oscillation. NESSiE is a Short-Baseline experiment with magnetic spectrometers at two different sites on the FNAL-Booster neutrino beam. The experiment would allow to definitively solve the existing tension of the muon-neutrino disappearance result with the appearance and disappearance anomalies at eV mass scale, by spanning one more order of magnitude in the mixing angle between standard and sterile neutrinos. We demonstrate that this project constitutes the most robust and fast way to unambigously study the neutrino physics at that scales.

قيم البحث

اقرأ أيضاً

126 - James Beacham 2013
APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson ($A^prime$) with sub-GeV mass and coupling to ordinary matter of $g^prime sim (10^{-6} - 10^{-2}) e$. Electrons impin ge upon a fixed target of high-Z material. An $A^prime$ is produced via a process analogous to photon bremsstrahlung, decaying to an $e^+ e^-$ pair. A test run was held in July of 2010, covering $m_{A^prime}$ = 175 to 250 MeV and couplings $g^prime/e ; textgreater ; 10^{-3}$. A full run is approved and will cover $m_{A^prime} sim$ 65 to 525 MeV and $g^prime/e ; textgreater ; 2.3 times10^{-4}$.
We outline the opportunities for spin physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton LHC beam extracted by a bent crystal. In particular, we focus on the study of single transverse spin asymetries with the polarisation of the target.
298 - Wojciech Wislicki 2016
We present recent results obtained by the KLOE-2 Collaboration at the DAPHNE e+e- collider. The first class of results concerns search for dark forces at the scale of 1 GeV in associated production of gamma and the U boson, in search for the Higgsstr ahlung and in possible decays of phi into eta and U. The second is in neutral kaon physics, on testing the CPT and Lorentz invariance, and on search for quantum decoherence effects in entangled pairs of kaons. The third class of results concerns precision measurements in hadronic physics at low energy where transition form factors of phi to pseudoscalar mesons pi0 and eta are determined.
We argue that the concept of a multi-purpose fixed-target experiment with the proton or lead-ion LHC beams extracted by a bent crystal would offer a number of ground-breaking precision-physics opportunities. The multi-TeV LHC beams will allow for the most energetic fixed-target experiments ever performed. The fixed-target mode has the advantage of allowing for high luminosities, spin measurements with a polarised target, and access over the full backward rapidity domain --uncharted until now-- up to x_F ~ -1.
We report on the opportunities for spin physics and Transverse-Momentum Dependent distribution (TMD) studies at a future multi-purpose fixed-target experiment using the proton or lead ion LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic fixed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER@LHC using typical targets would surpass that of RHIC by more that 3 orders of magnitude in a similar energy region. In unpolarised proton-proton collisions, AFTER@LHC allows for measurements of TMDs such as the Boer-Mulders quark distributions, the distribution of unpolarised and linearly polarised gluons in unpolarised protons. Using the polarisation of hydrogen and nuclear targets, one can measure transverse single-spin asymmetries of quark and gluon sensitive probes, such as, respectively, Drell-Yan pair and quarkonium production. The fixed-target mode has the advantage to allow for measurements in the target-rapidity region, namely at large x^uparrow in the polarised nucleon. Overall, this allows for an ambitious spin program which we outline here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا