ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron background signal in superheated droplet detectors of the Phase II SIMPLE dark matter search

102   0   0.0 ( 0 )
 نشر من قبل Ana Fernandes
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The simulation of the neutron background for Phase II of the SIMPLE direct dark matter search experiment is fully reported with various improvements relative to previous estimates. The model employs the Monte Carlo MCNP neutron transport code, using as input a realistic geometry description, measured radioassays and material compositions, and tabulated (alpha,n) yields and spectra. Developments include the accounting of recoil energy distributions, consideration of additional reactions and materials and examination of the relevant (alpha,n) data. A thorough analysis of the simulation results is performed that addresses an increased number of non-statistical uncertainties. The referred omissions are seen to provide a net increase of 13$%$ in the previously-reported background estimates whereas the non-statistical uncertainty rises to 25$%$. The final estimated recoil event rate is 0.372 $pm$ 0.002 (stat.) $pm$ 0.097 (non-stat.) evt/kgd resulting in insignificant changes over the results of the experiment.

قيم البحث

اقرأ أيضاً

The combined measurement of dark matter interactions with different superheated liquids has recently been suggested as a cross-correlation technique in identifying WIMP candidates. We describe the fabrication of high concentration superheated droplet detectors based on the light nuclei liquids C3F8, C4F8, C4F10 and CCl2F2, and investigation of their irradiation response with respect to C2ClF5. The results are discussed in terms of the basic physics of superheated liquid response to particle interactions, as well as the necessary detector qualifications for application in dark matter search investigations. The possibility of heavier nuclei SDDs is explored using the light nuclei results as a basis, with CF3I provided as an example.
Phase II of SIMPLE (Superheated Instrument for Massive ParticLe Experiments) searched for astroparticle dark matter using superheated liquid C$_{2}$ClF$_{5}$ droplet detectors. Each droplet generally requires an energy deposition with linear energy t ransfer (LET) $gtrsim$ 150 keV/$mu$m for a liquid-to-gas phase transition, providing an intrinsic rejection against minimum ionizing particles of order 10$^{-10}$, and reducing the backgrounds to primarily $alpha$ and neutron-induced recoil events. The droplet phase transition generates a millimetric-sized gas bubble which is recorded by acoustic means. We describe the SIMPLE detectors, their acoustic instrumentation, and the characterizations, signal analysis and data selection which yield a particle-induced, true nucleation event detection efficiency of better than 97% at a 95% C.L. The recoil-$alpha$ event discrimination, determined using detectors first irradiated with neutrons and then doped with alpha emitters, provides a recoil identification of better than 99%; it differs from those of COUPP and PICASSO primarily as a result of their different liquids with lower critical LETs. The science measurements, comprising two shielded arrays of fifteen detectors each and a total exposure of 27.77 kgd, are detailed. Removal of the 1.94 kgd Stage 1 installation period data, which had previously been mistakenly included in the data, reduces the science exposure from 20.18 to 18.24 kgd and provides new contour minima of $sigma_{p}$ = 4.3 $times$ 10$^{-3}$ pb at 35 GeV/c$^{2}$ in the spin-dependent sector of WIMP-proton interactions and $sigma_{N}$ = 3.6 $times$ 10$^{-6}$ pb at 35 GeV/c$^{2}$ in the spin-independent sector. These results are examined with respect to the fluorine spin and halo parameters used in the previous data analysis.
We report results of a 14.1 kgd measurement with 15 superheated droplet detectors of total active mass 0.208 kg, comprising the first stage of a 30 kgd Phase II experiment. In combination with the results of the neutron-spin sensitive XENON10 experim ent, these results yield a limit of |a_p| < 0.32 for M_W = 50 GeV/c2 on the spin-dependent sector of weakly interacting massive particle-nucleus interactions with a 50% reduction in the previously allowed region of the phase space formerly defined by XENON, KIMS and PICASSO. In the spin-independent sector, a limit of 2.3x10-5 pb at M_W = 45 GeV/c2 is obtained.
89 - E. Dian 2018
Inelastic neutron scattering instruments require very low background; therefore the proper shielding for suppressing the scattered neutron background, both from elastic and inelastic scattering is essential. The detailed understanding of the backgrou nd scattering sources is required for effective suppression. The Multi-Grid thermal neutron detector is an Ar/CO$_{2}$ gas filled detector with a $^{10}$B$_{4}$C neutron converter coated on aluminium substrates. It is a large-area detector design that will equip inelastic neutron spectrometers at the European Spallation Source (ESS). To this end a parameterised Geant4 model is built for the Multi-Grid detector. This is the first time thermal neutron scattering background sources have been modelled in a detailed simulation of detector response. The model is validated via comparison with measured data of prototypes installed on the IN6 instrument at ILL and on the CNCS instrument at SNS. The effect of scattering originating in detector components is smaller than effects originating elsewhere.
The PICASSO project is a cold dark matter (CDM) search experiment relying on the superheated droplet technique. The detectors use superheated freon liquid droplets (active material) dispersed and trapped in a polymerized gel. This detection technique is based on the phase transition of superheated droplets at room or moderate temperatures. The phase transitions are induced by nuclear recoils when undergoing interactions with particles, including CDM candidates such as the neutralinos predicted by supersymmetric models. The suitability of the technique for this purpose has been demonstrated by R&D studies performed over several years on detectors of various composition and volume. Simulations performed to understand the detector response to neutrons and alpha particles are presented along with corresponding data obtained at the Montreal Laboratory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا