ترغب بنشر مسار تعليمي؟ اضغط هنا

SLoWPoKES-II: 100,000 Wide Binaries Identified in SDSS without Proper Motions

270   0   0.0 ( 0 )
 نشر من قبل Saurav Dhital
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the SLoWPoKES-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey by matching photometric distances. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need of proper motions. 105,537 visual binaries with angular separations of $sim$1-20, are identified, each with a probability of chance alignment of $lesssim$5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems---in mass, mass ratios, binary separations, metallicity, and evolutionary states---that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are comprised of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a 7-fold increase in the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we find that ~6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the world wide web via the Filtergraph data visualization portal.



قيم البحث

اقرأ أيضاً

75 - Cathie Clarke 2019
We examine the distribution of on-sky relative velocities for wide binaries previously assembled from GAIA DR2 data and focus on the origin of the high velocity tail of apparently unbound systems which may be interpreted as evidence for non-Newtonian gravity in the weak field limit. We argue that this tail is instead explicable in terms of a population of hidden triples, i.e. cases where one of the components of the wide binary is itself a close binary unresolved in the GAIA data. In this case the motion of the photocentre of the inner pair relative to its barycentre affects the apparent relative proper motion of the wide pair and can make pairs that are in fact bound appear to be unbound. We show that the general shape of the observed distributions can be reproduced using simple observationally motivated assumptions about the population of hidden triples.
287 - M.Yu. Khovritchev 2016
Based on observations performed with the Pulkovo normal astrograph in 2008-2015 and data from sky surveys (DSS, 2MASS, SDSS DR12, WISE), we have investigated the motions of 1308 stars with proper motions larger than 300 mas/yr down to magnitude 17. T he main idea of our search for binary stars based on this material is reduced to comparing the quasi-mean (POSS2-POSS1; an epoch difference of $approx$50 yr) and quasi-instantaneous (2MASS, SDSS, WISE, Pulkovo; an epoch difference of $approx$10 yr) proper motions. If the difference is statistically significant compared to the proper motion errors, then the object may be considered as a {Delta}{mu}-binary candidate. One hundred and twenty one stars from among those included in the observational program satisfy this requirement. Additional confirmations of binarity for a number of stars have been obtained by comparing the calculated proper motions with the data from several programs of stellar trigonometric parallax determinations and by analyzing the asymmetry of stellar images on sky-survey CCD frames. Analysis of the highly accurate SDSS photometric data for four stars (J0656+3827, J0838+3940, J1229+5332, J2330+4639) allows us to reach a conclusion about the probability that these {Delta}{mu} binaries are white dwarf + M dwarf pairs.
We report the results from spectroscopic observations of 113 ultra-wide, low-mass binary systems, composed largely of M0--M3 dwarfs, from the SLoWPoKES catalog of common proper motion pairs identified in the Sloan Digital Sky Survey. Radial velocitie s of each binary member were used to confirm that they are co-moving and, consequently, to further validate the high fidelity of the SLoWPoKES catalog. Ten stars appear to be spectroscopic binaries based on broad or split spectral features, supporting previous findings that wide binaries are likely to be hierarchical systems. We measured the H{alpha} equivalent width of the stars in our sample and found that components of 81% of the observed pairs has similar H{alpha} levels. The difference in H{alpha} equivalent width amongst components with similar masses was smaller than the range of H{alpha} variability for individual objects. We confirm that the Lepine et al. {zeta}(CaH2+CaH3, TiO5) index traces iso-metallicity loci for most of our sample of M dwarfs. However, we find a small systematic bias in {zeta}, especially in the early-type M dwarfs. We use our sample to recalibrate the definition of {zeta}. While representing a small change in the definition, the new {zeta} is a significantly better predictor of iso-metallicity for the higher mass M dwarfs.
We present the chromospheric activity (CA) levels, metallicities and full space motions for 41 F, G, K and M dwarf stars in 36 wide binary systems. Thirty-one of the binaries, contain a white dwarf component. In such binaries the total age can be est imated by adding the cooling age of the white dwarf to an estimate of the progenitors main sequence lifetime. To better understand how CA correlates to stellar age, 14 cluster member stars were also observed. Our observations demonstrate for the first time that in general CA decays with age from 50 Myr to at least 8 Gyr for stars with 1.0 < V-I < 2.4. However, little change occurs in CA level for stars with V-I < 1.0 between 1 Gyr and 5 Gyr, consistent with the results of Pace et al. (2009). Our sample also exhibits a negative correlation between stellar age and metallicity, a positive correlation between stellar age and W space velocity component and the W velocity dispersion increases with age. Finally, the population membership of these wide binaries is examined based upon their U, V, W kinematics, metallicity and CA. We conclude that wide binaries are similar to field and cluster stars in these respects. More importantly, they span a much more continuous range in age and metallicity than is afforded by nearby clusters.
We present measurements of internal proper motions at more than five hundred positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 years. Comparison of the t wo observations shows clearly the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, and in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, as the more reliable. We go on to perform a criss-cross mapping analysis on the proper motion vectors which helps in the interpretation of the velocity pattern. Combining our results on the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula as 1300 pc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا