ترغب بنشر مسار تعليمي؟ اضغط هنا

Time variation of Kepler transits induced by stellar spots - a way to distinguish between prograde and retrograde motion. II. Application to KOIs

357   0   0.0 ( 0 )
 نشر من قبل Avi Shporer
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mazeh, Holczer, and Shporer (2015) have presented an approach that can, in principle, use the derived transit timing variation (TTV) of some transiting planets observed by the $Kepler$ mission to distinguish between prograde and retrograde motion of their orbits with respect to their parent stars rotation. The approach utilizes TTVs induced by spot-crossing events that occur when the planet moves across a spot on the stellar surface, looking for a correlation between the derived TTVs and the stellar brightness derivatives at the corresponding transits. This can work even in data that cannot temporally resolve the spot-crossing events themselves. Here we apply this approach to the $Kepler$ KOIs, identifying nine systems where the photometric spot modulation is large enough and the transit timing accurate enough to allow detection of a TTV-brightness-derivatives correlation. Of those systems five show highly significant prograde motion (Kepler-17b, Kepler-71b, KOI-883.01, KOI-895.01, and KOI-1074.01), while no system displays retrograde motion, consistent with the suggestion that planets orbiting cool stars have prograde motion. All five systems have impact parameter $0.2lesssim blesssim0.5$, and all systems within that impact parameter range show significant correlation, except HAT-P-11b where the lack of a correlation follows its large stellar obliquity. Our search suffers from an observational bias against detection of high impact parameter cases, and the detected sample is extremely small. Nevertheless, our findings may suggest that stellar spots, or at least the larger ones, tend to be located at a low stellar latitude, but not along the stellar equator, similar to the Sun.

قيم البحث

اقرأ أيضاً

Context: The accretion history of the Milky Way is still unknown, despite the recent discovery of stellar systems that stand out in terms of their energy-angular momentum space, such as Gaia-Enceladus-Sausage. In particular, it is still unclear how t hese groups are linked and to what extent they are well-mixed. Aims: We investigate the similarities and differences in the properties between the prograde and retrograde (counter-rotating) stars and set those results in context by using the properties of Gaia-Enceladus-Sausage, Thamnos/Sequoia, and other suggested accreted populations. Methods: We used the stellar metallicities of the major large spectroscopic surveys (APOGEE, Gaia-ESO, GALAH, LAMOST, RAVE, SEGUE) in combination with astrometric and photometric data from Gaias second data-release. We investigated the presence of radial and vertical metallicity gradients as well as the possible correlations between the azimuthal velocity, $v_phi,$ and metallicity, [M/H], as qualitative indicators of the presence of mixed populations. Results: We find that a handful of super metal-rich stars exist on retrograde orbits at various distances from the Galactic center and the Galactic plane. We also find that the counter-rotating stars appear to be a well-mixed population, exhibiting radial and vertical metallicity gradients on the order of $sim$ -0.04 dex/kpc and -0.06 dex/kpc, respectively, with little (if any) variation when different regions of the Galaxy are probed. The prograde stars show a $v_phi$-[M/H] relation that flattens -- and, perhaps, even reverses as a function of distance from the plane. Retrograde samples selected to roughly probe Thamnos and Gaia-Enceladus-Sausage appear to be different populations yet they also appear to be quite linked, as they follow the same trend in terms of the eccentricity versus metallicity space.
Observations of various solar-type stars along decades revealed that they can have magnetic cycles, just like our Sun. An investigation of the relation between their cycle length and rotation period can shed light on the dynamo mechanisms operating i n these stars. Previous works on this relation suggested that the stars could be separated into active and inactive branches, with the Sun falling between them. In this work, we determined short magnetic activity cycles for 6 active solar-type stars observed by the Kepler telescope. The method adopted here estimates the activity from the excess in the residuals of the transitlight curves. This excess is obtained by subtracting a spotless model transit from the light curve, and then integrating over all the residuals during the transit. The presence of long term periodicity is estimated from the analysis of a Lomb-Scargle periodogram of the complete time series. Finally, we investigate the rotation-cycle period relation for the stars analysed here and find that some active stars do not follow the behaviour proposed earlier, falling in the inactive branch. In addition, we also notice a considerable spread from other stars in the literature in the active/inactive branches.
Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained with the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly about 50 seconds) and those that are also burning helium (period spacing about 100 to 300 seconds).
We search for transits around all known pulsating {delta} Sct variables (6500 K < Teff < 10 000 K) in the long-cadence Kepler data after subtracting the pulsation signal through an automated routine. To achieve this, we devise a simple and computatio nally inexpensive method for distinguishing between low-frequency pulsations and transits in light curves. We find 3 new candidate transit events that were previously hidden behind the pulsations, but caution that they are likely to be false positive events. We also examined the Kepler Objects of Interest catalog and identify 13 additional host stars which show {delta} Sct pulsations. For each star in our sample, we use the non-detection of pulsation timing variations for a planet that is known to be transiting a {delta} Sct variable to obtain both an upper limit on the mass of the planet and the expected radial velocity semi-amplitude of the host star. Simple injection tests of our pipeline imply 100% recovery for planets of 0.5 RJup or greater. Extrapolating our number of Kepler {delta} Sct stars, we expect 12 detectable planets above 0.5 RJup in TESS. Our sample contains some of the hottest known transiting planets around evolved stars, and is the first complete sample of transits around {delta} Sct variables. We make available our code and pulsation-subtracted light curves to facilitate further analysis.
Variability observed in photometric lightcurves of late-type stars (on timescales longer than a day) is a dominant noise source in exoplanet surveys and results predominantly from surface manifestations of stellar magnetic activity, namely faculae an d spots. The implementation of faculae in lightcurve models is an open problem, with scaling typically based on spectra equivalent to hot stellar atmospheres or assuming a solar-derived facular contrast. We modelled rotational (single period) lightcurves of active G2, K0, M0 and M2 stars, with Sun-like surface distributions and realistic limb-dependent contrasts for faculae and spots. The sensitivity of lightcurve variability to changes in model parameters such as stellar inclination, feature area coverage, spot temperature, facular region magnetic flux density and active band latitudes is explored. For our lightcurve modelling approach we used actress, a geometrically accurate model for stellar variability. actress generates 2-sphere maps representing stellar surfaces and populates them with user-prescribed spot and facular region distributions. From this, lightcurves can be calculated at any inclination. Quiet star limb darkening and limb-dependent facular contrasts were derived from MURaM 3D magnetoconvection simulations using ATLAS9. 1D stellar atmosphere models were used for the spot contrasts. We applied actress in Monte-Carlo simulations, calculating lightcurve variability amplitudes in the Kepler band. We found that, for a given spectral type and stellar inclination, spot temperature and spot area coverage have the largest effect on variability of all simulation parameters. For a spot coverage of 1%, the typical variability of a solar-type star is around 2 parts-per-thousand. The presence of faculae clearly affects the mean brightness and lightcurve shape, but has relatively little influence on the variability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا