ﻻ يوجد ملخص باللغة العربية
Observations of various solar-type stars along decades revealed that they can have magnetic cycles, just like our Sun. An investigation of the relation between their cycle length and rotation period can shed light on the dynamo mechanisms operating in these stars. Previous works on this relation suggested that the stars could be separated into active and inactive branches, with the Sun falling between them. In this work, we determined short magnetic activity cycles for 6 active solar-type stars observed by the Kepler telescope. The method adopted here estimates the activity from the excess in the residuals of the transitlight curves. This excess is obtained by subtracting a spotless model transit from the light curve, and then integrating over all the residuals during the transit. The presence of long term periodicity is estimated from the analysis of a Lomb-Scargle periodogram of the complete time series. Finally, we investigate the rotation-cycle period relation for the stars analysed here and find that some active stars do not follow the behaviour proposed earlier, falling in the inactive branch. In addition, we also notice a considerable spread from other stars in the literature in the active/inactive branches.
The stellar magnetic field plays a crucial role in the star internal mechanisms, as in the interactions with its environment. The study of starspots provides information about the stellar magnetic field, and can characterise the cycle. Moreover, the
We search for transits around all known pulsating {delta} Sct variables (6500 K < Teff < 10 000 K) in the long-cadence Kepler data after subtracting the pulsation signal through an automated routine. To achieve this, we devise a simple and computatio
We present stellar properties (mass, age, radius, distances) of 57 stars from a seismic inference using full-length data sets from Kepler. These stars comprise active stars, planet-hosts, solar-analogs, and binary systems. We validate the distances d
An exoplanet transiting in front of the disk of its parent star may hide a dark starspot causing a detectable change in the light curve, that allows to infer physical characteristics of the spot such as size and intensity. We have analysed the Kepler