ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep HeII and CIV Spectroscopy of a Giant Lyman alpha Nebula: Dense Compact Gas Clumps in the Circumgalactic Medium of a z~2 Quasar

118   0   0.0 ( 0 )
 نشر من قبل Fabrizio Arrigoni Battaia
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent discovery by Cantalupo et al. (2014) of the largest (~500 kpc) and luminous Ly-alpha nebula associated with the quasar UM287 (z=2.279) poses a great challenge to our current understanding of the astrophysics of the halos hosting massive z~2 galaxies. Either an enormous reservoir of cool gas is required $Msimeq10^{12}$ $M_{odot}$, exceeding the expected baryonic mass available, or one must invoke extreme gas clumping factors not present in high-resolution cosmological simulations. However, observations of Ly-alpha emission alone cannot distinguish between these two scenarios. We have obtained the deepest ever spectroscopic integrations in the HeII and CIV lines with the goal of detecting extended line emission, but detect neither line to a 3$sigma$ limiting SB $simeq10^{-18}$ erg/s/cm$^2$/arcsec$^2$. We construct models of the expected emission spectrum in the highly probable scenario that the nebula is powered by photoionization from the central hyper-luminous quasar. The non-detection of HeII implies that the nebular emission arises from a mass $M_{rm c}lesssim6.4times10^{10}$ $M_{odot}$ of cool gas on ~200 kpc scales, distributed in a population of remarkably dense ($n_{rm H}gtrsim3$ cm$^{-3}$) and compact ($Rlesssim20$ pc) clouds, which would clearly be unresolved by current cosmological simulations. Given the large gas motions suggested by the Ly-alpha line ($vsimeq$ 500 km/s), it is unclear how these clouds survive without being disrupted by hydrodynamic instabilities. Our study serves as a benchmark for future deep integrations with current and planned wide-field IFU such as MUSE, KCWI, and KMOS. Our work suggest that a $simeq$ 10 hr exposure would likely detect ~10 rest-frame UV/optical emission lines, opening up the possibility of conducting detailed photoionization modeling to infer the physical state of gas in the CGM.

قيم البحث

اقرأ أيضاً

We report the serendipitous detection of a 0.2 L$^*$, Lyman-$alpha$ emitting galaxy at redshift 2.5 at an impact parameter of 50 kpc from a bright background QSO sightline. A high-resolution spectrum of the QSO reveals a partial Lyman-limit absorptio n system ($N_mathrm{HI}=10^{16.94pm0.10}$ cm$^{-2}$) with many associated metal absorption lines at the same redshift as the foreground galaxy. Using photoionization models that carefully treat measurement errors and marginalise over uncertainties in the shape and normalisation of the ionizing radiation spectrum, we derive the total hydrogen column density $N_mathrm{H}=10^{19.4pm0.3}$ cm$^{-2}$, and show that all the absorbing clouds are metal enriched, with $Z=0.1$-$0.6 Z_odot$. These metallicities and the systems large velocity width ($436$ km$,$s$^{-1}$) suggest the gas is produced by an outflowing wind. Using an expanding shell model we estimate a mass outflow rate of $sim5 M_odot,$yr$^{-1}$. Our photoionization model yields extremely small sizes ($<$100-500 pc) for the absorbing clouds, which we argue are typical of high column density absorbers in the circumgalactic medium (CGM). Given these small sizes and extreme kinematics, it is unclear how the clumps survive in the CGM without being destroyed by hydrodynamic instabilities. The small cloud sizes imply that even state-of-the-art cosmological simulations require more than a $1000$-fold improvement in mass resolution to resolve the hydrodynamics relevant for cool gas in the CGM.
We present the discovery of HLock01-LAB, a luminous and large Lya nebula at z=3.326. Medium-band imaging and long-slit spectroscopic observations with the Gran Telescopio Canarias reveal extended emission in the Lya 1215AA, CIV1550AA, and HeII 1640AA lines over ~100kpc, and a total luminosity L(Lya)=(6.4+/-0.1)x10^44 erg s^-1. HLock01-LAB presents an elongated morphology aligned with two faint radio sources contained within the central ~8kpc of the nebula. The radio structures are consistent to be faint radio jets or lobes of a central galaxy, whose spectrum shows nebular emission characteristic of a type-II active galactic nucleus (AGN). The continuum emission of the AGN at short wavelengths is, however, likely dominated by stellar emission of the host galaxy, for which we derive a stellar mass M* = 2.3x10^11 Msun. The detection of extended emission in CIV and CIII] indicates that the gas within the nebula is not primordial. Feedback may have enriched the halo at at least 50 kpc from the nuclear region. Using rest-frame UV emission-line diagnostics, we find that the gas in the nebula is likely heated by the AGN. Nevertheless, at the center of the nebula we find extreme emission line ratios of Lya/CIV~60 and Lya/HeII~80, one of the highest values measured to date, and well above the standard values of photoionization models (Lya/HeII~30 for case B photoionization). Our data suggest that jet-induced shocks are likely responsible for the increase of the electron temperature and, thus, the observed Lya enhancement in the center of the nebula. This scenario is further supported by the presence of radio structures and perturbed kinematics in this region. The large Lya luminosity in HLock01-LAB is likely due to a combination of AGN photoionization and jet-induced shocks, highlighting the diversity of sources of energy powering Lya nebulae. [abridged]
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-$alpha$ line redshifted to $sim$ 0.9 microns at z>6.5. Here, we report the discovery of a very Lyman-$alpha$ luminous quasar, PSO J006.1240+39.2219 at redshift z=6.618, selected based on its red colour and multi-epoch detection of the Lyman-$alpha$ emission in a single near-infrared band. The Lyman-$alpha$-line luminosity of PSO J006.1240+39.2219 is unusually high and estimated to be 0.8$times$10$^{12}$ Solar luminosities (about 3% of the total quasar luminosity). The Lyman-$alpha$ emission of PSO J006.1240+39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-$alpha$ line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.
We present the discovery of copious molecular gas in the halo of cid346, a z=2.2 quasar studied as part of the SINFONI survey for Unveiling the Physics and Effect of Radiative feedback (SUPER). New Atacama Compact Array (ACA) CO(3-2) observations det ect a much higher flux (by a factor of $14pm5$) than measured on kpc-scales ($rlesssim8$ kpc) using previous snapshot Atacama Large Millimeter/submillimeter Array (ALMA) data. Such additional CO(3-2) emission traces a structure that extends out to $rsim200$ kpc in projected size, as inferred through direct imaging and confirmed by an analysis of the uv visibilities. This is the most extended molecular circumgalactic medium (CGM) reservoir that has ever been mapped. It shows a complex kinematics, with an overall broad line profile (FWHM = 1000 km/s) that is skewed towards redshifted velocities up to at least $vsim1000$ km/s. Using the optically thin assumption, we estimate a strict lower limit for the total molecular CGM mass observed by ACA of, $M_{mol}^{CGM}>10^{10}~M_{odot}$. There is however room for up to $M^{CGM}_{mol}sim 1.7times 10^{12}$ $M_{odot}$, once optically thick CO emission with $alpha_{rm CO}=3.6~M_{odot}~(K~km~s^{-1}~pc^2)^{-1}$ and $L^{prime}_{CO(3-2)}/L^{prime}_{CO(1-0)}=0.5$ are assumed. Since cid346 hosts AGN-driven ionized outflows and since there is no evidence of merging companions or an overdensity, we suggest that outflows may have played a crucial rule in seeding metal-enriched, dense gas on halo scales. However, the origin of such an extended molecular CGM remains unclear.
We present IRAM PdBI observations of the CO(3-2) and CO(5-4) line transitions from a Ly-alpha blob at z~2.7 in order to investigate the gas kinematics, determine the location of the dominant energy source, and study the physical conditions of the mol ecular gas. CO line and dust continuum emission are detected at the location of a strong MIPS source that is offset by ~1.5 from the Ly-alpha peak. Neither of these emission components is resolved with the 1.7 beam, showing that the gas and dust are confined to within ~7kpc from this galaxy. No millimeter source is found at the location of the Ly-alpha peak, ruling out a central compact source of star formation as the power source for the Ly-alpha emission. Combined with a spatially-resolved spectrum of Ly-alpha and HeII, we constrain the kinematics of the extended gas using the CO emission as a tracer of the systemic redshift. Near the MIPS source, the Ly-alpha profile is symmetric and its line center agrees with that of CO line, implying that there are no significant bulk flows and that the photo-ionization from the MIPS source might be the dominant source of the Ly-alpha emission. In the region near the Ly-alpha peak, the gas is slowly receding (~100km/s) with respect to the MIPS source, thus making the hyper-/superwind hypothesis unlikely. We find a sub-thermal line ratio between two CO transitions, I_CO(5-4)/I_CO(3-2)=0.97+/-0.21. This line ratio is lower than the average values found in high-z SMGs and QSOs, but consistent with the value found in the Galactic center, suggesting that there is a large reservoir of low-density molecular gas that is spread over the MIPS source and its vicinity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا