ﻻ يوجد ملخص باللغة العربية
We report the serendipitous detection of a 0.2 L$^*$, Lyman-$alpha$ emitting galaxy at redshift 2.5 at an impact parameter of 50 kpc from a bright background QSO sightline. A high-resolution spectrum of the QSO reveals a partial Lyman-limit absorption system ($N_mathrm{HI}=10^{16.94pm0.10}$ cm$^{-2}$) with many associated metal absorption lines at the same redshift as the foreground galaxy. Using photoionization models that carefully treat measurement errors and marginalise over uncertainties in the shape and normalisation of the ionizing radiation spectrum, we derive the total hydrogen column density $N_mathrm{H}=10^{19.4pm0.3}$ cm$^{-2}$, and show that all the absorbing clouds are metal enriched, with $Z=0.1$-$0.6 Z_odot$. These metallicities and the systems large velocity width ($436$ km$,$s$^{-1}$) suggest the gas is produced by an outflowing wind. Using an expanding shell model we estimate a mass outflow rate of $sim5 M_odot,$yr$^{-1}$. Our photoionization model yields extremely small sizes ($<$100-500 pc) for the absorbing clouds, which we argue are typical of high column density absorbers in the circumgalactic medium (CGM). Given these small sizes and extreme kinematics, it is unclear how the clumps survive in the CGM without being destroyed by hydrodynamic instabilities. The small cloud sizes imply that even state-of-the-art cosmological simulations require more than a $1000$-fold improvement in mass resolution to resolve the hydrodynamics relevant for cool gas in the CGM.
The recent discovery by Cantalupo et al. (2014) of the largest (~500 kpc) and luminous Ly-alpha nebula associated with the quasar UM287 (z=2.279) poses a great challenge to our current understanding of the astrophysics of the halos hosting massive z~
Ninety per cent of baryons are located outside galaxies, either in the circumgalactic or intergalactic medium. Theory points to galactic winds as the primary source of the enriched and massive circumgalactic medium. Winds from compact starbursts have
We present gravitational-arc tomography of the cool-warm enriched circumgalactic medium (CGM) of an isolated galaxy (``G1) at $z approx 0.77$. Combining VLT/MUSE adaptive-optics and Magellan/MagE echelle spectroscopy we obtain partially-resolved kine
We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass halos hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, an
In our current galaxy formation paradigm, high-redshift galaxies are predominantly fuelled by accretion of cool, metal-poor gas from the intergalactic medium. Hydrodynamical simulations predict that this material should be observable in absorption ag