ترغب بنشر مسار تعليمي؟ اضغط هنا

Response of microchannel plates to single particles and to electromagnetic showers

92   0   0.0 ( 0 )
 نشر من قبل Tommaso Tabarelli de Fatis
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Brianza




اسأل ChatGPT حول البحث

We report on the response of microchannel plates (MCPs) to single relativistic particles and to electromagnetic showers. Particle detection by means of secondary emission of electrons at the MCP surface has long been proposed and is used extensively in ion time-of-flight mass spectrometers. What has not been investigated in depth is their use to detect the ionizing component of showers. The time resolution of MCPs exceeds anything that has been previously used in calorimeters and, if exploited effectively, could aid in the event reconstruction at high luminosity colliders. Several prototypes of photodetectors with the amplification stage based on MCPs were exposed to cosmic rays and to 491 MeV electrons at the INFN-LNF Beam-Test Facility. The time resolution and the efficiency of the MCPs are measured as a function of the particle multiplicity, and the results used to model the response to high-energy showers.

قيم البحث

اقرأ أيضاً

Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency e is as high as possible, as the overall efficiency scales with e over n, i.e. the power of the number of detected particles. Here we present measured absolute detection efficiencies for protons of several micro-channel plates (MCPs), including efficiency enhanced funnel MCPs. Furthermore, the relative detection efficiency for two-, three-, four-, and five-body fragmentation of CHBrClF has been examined. The funnel MCPs exhibit an efficiency of approx. 90 percent, gaining a factor of 24 (as compared to normal MCPs) in case of a five-fold ion coincidence detection.
A system of two microchannel-plate detectors has been successfully implemented for tracking projectile-fragmentation beams. The detectors provide interaction positions, angles, and arrival times of ions at the reaction target. The current design is a n adaptation of an assembly used for low-energy beams ($sim$1.4 MeV/nucleon). In order to improve resolution in tracking high-energy heavy-ion beams, the magnetic field strength between the secondary-electron accelerating foil and the microchannel plate had to be increased substantially. Results from an experiment using a 37-MeV/nucleon ${}^{56}$Ni beam show that the tracking system can achieve sub-nanosecond timing resolution and a position resolution of $sim$1 mm for beam intensities up to $5times10^{5}$ pps.
High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose , we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.
The HARP system of resistive plate chambers (RPCs) was designed to perform particle identification by the measurement of the difference in the time-of-flight of different particles. In previous papers an apparent discrepancy was shown between the res ponse of the RPCs to minimum ionizing pions and heavily ionizing protons. Using the kinematics of elastic scattering off a hydrogen target a controlled beam of low momentum recoil protons was directed onto the chambers. With this method the trajectory and momentum, and hence the time-of-flight of the protons can be precisely predicted without need for a measurement of momentum of the protons. It is demonstrated that the measurement of the time-of-arrival of particles by the thin gas-gap glass RPC system of the HARP experiment depends on the primary ionization deposited by the particle in the detector.
An estimate of environmental background hit rate on triple-GEM chambers is performed using Monte Carlo (MC) simulation and compared to data taken by test chambers installed in the CMS experiment (GE1/1) during Run-2 at the Large Hadron Collider (LHC) . The hit rate is measured using data collected with proton-proton collisions at 13 TeV and a luminosity of 1.5$times10^{34}$ cm$^{-2}$ s$^{-1}$. The simulation framework uses a combination of the FLUKA and Geant4 packages to obtain the hit rate. FLUKA provides the radiation environment around the GE1/1 chambers, which is comprised of the particle flux with momentum direction and energy spectra ranging from $10^{-11}$ to $10^{4}$ MeV for neutrons, $10^{-3}$ to $10^{4}$ MeV for $gamma$s, $10^{-2}$ to $10^{4}$ MeV for $e^{pm}$, and $10^{-1}$ to $10^{4}$ MeV for charged hadrons. Geant4 provides an estimate of detector response (sensitivity) based on an accurate description of detector geometry, material composition and interaction of particles with the various detector layers. The MC simulated hit rate is estimated as a function of the perpendicular distance from the beam line and agrees with data within the assigned uncertainties of 10-14.5%. This simulation framework can be used to obtain a reliable estimate of background rates expected at the High Luminosity LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا