ﻻ يوجد ملخص باللغة العربية
The great potential of Dirac electrons for plasmonics and photonics has been readily recognized after their discovery in graphene, followed by applications to smart optical devices. Dirac carriers are also found in topological insulators (TI) --quantum systems having an insulating gap in the bulk and intrinsic Dirac metallic states at the surface--. Here, we investigate the plasmonic response of ring structures patterned in Bi$_2$Se$_3$ TI films, which we investigate through terahertz (THz) spectroscopy. The rings are observed to exhibit a bonding and an antibonding plasmon modes, which we tune in frequency by varying their diameter. We develop an analytical theory based on the THz conductivity of unpatterned films, which accurately describes the strong plasmon-phonon hybridization and Fano interference experimentally observed as the bonding plasmon is swiped across the promineng 2,THz phonon exhibited by this material. This work opens the road for the investigation of plasmons in topological insulators and for their application in tunable THz devices.
We report the observation of photo-induced plasmon-phonon coupled modes in the group IV-VI semiconductor PbTe using Fourier-transform inelastic X-ray scattering at the Linac Coherent Light Source (LCLS). We measure the near-zone-center dispersion of
Controlling interfacial interactions in magnetic/topological insulator heterostructures is a major challenge for the emergence of novel spin-dependent electronic phenomena. As for any rational design of heterostructures that rely on proximity effects
Plasmon-emitter interactions are of paramount importance in modern nanoplasmonics and are generally maximal at short emitter-surface separations. However, when the separation falls below 10-20 nm, the classical theory progressively deteriorates due t
An intrinsic antiferromagnetic topological insulator $mathrm{MnBi_2Te_4}$ can be realized by intercalating Mn-Te bilayer chain in a topological insulator, $mathrm{Bi_2Te_3}$. $mathrm{MnBi_2Te_4}$ provides not only a stable platform to demonstrate exo
A topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostruct