ﻻ يوجد ملخص باللغة العربية
The feasibility of generation of bright ultrashort gamma-ray pulses is demonstrated in the interaction of a relativistic electron bunch with a counterpropagating tightly-focused superstrong laser beam in the radiation dominated regime. The Compton scattering spectra of gamma-radiation are investigated using a semiclassical description for the electron dynamics in the laser field and a quantum electrodynamical description for the photon emission. We demonstrate the feasibility of ultrashort gamma-ray bursts of hundreds of attoseconds and of dozens of megaelectronvolt photon energies in the near-backwards direction of the initial electron motion. The tightly focused laser field structure and radiation reaction are shown to be responsible for such short gamma-ray bursts which are independent of the durations of the electron bunch and of the laser pulse. The results are measurable with the laser technology available in a near-future.
Gamma-ray beams with large angular momentum are a very valuable tool to study astrophysical phenomena in a laboratory. We investigate generation of well-collimated $gamma$-ray beams with a very large orbital angular momentum using nonlinear Compton s
The photon spectrum from electrons scattering on multiple laser pulses exhibits interference effects not present for scattering on a single pulse. We investigate the conditions required for the experimental observation of these interference effects i
X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering
Nonlinear Compton scattering is an inelastic scattering process where a photon is emitted due to the interaction between an electron and an intense laser field. With the development of X-ray free-electron lasers, the intensity of X-ray laser is great
Ultrafast processes in matter can be captured and even controlled by using sequences of few-cycle optical pulses, which need to be well characterized, both in amplitude and phase. The same degree of control has not yet been achieved for few-cycle ext