ﻻ يوجد ملخص باللغة العربية
We report low-temperature thermal conductivity $kappa$ of pyrochlore Yb$_2$Ti$_2$O$_7$, which contains frustrated spin-ice correlations with significant quantum fluctuations. In the disordered spin-liquid regime, $kappa(H)$ exhibits a nonmonotonic magnetic field dependence, which is well explained by the strong spin-phonon scattering and quantum monopole excitations. We show that the excitation energy of quantum monopoles is strongly suppressed from that of dispersionless classical monopoles. Moreover, in stark contrast to the diffusive classical monopoles, the quantum monopoles have a very long mean free path. We infer that the quantum monopole is a novel heavy particle, presumably boson, which is highly mobile in a three-dimensional spin liquid.
In a ferromagnet, the spin excitations are the well-studied magnons. In frustrated quantum magnets, long-range magnetic order fails to develop despite a large exchange coupling between the spins. In contrast to the magnons in conventional magnets, th
The pyrochlore material Yb2Ti2O7 displays unexpected quasi-two-dimensional (2D) magnetic correlations within a cubic lattice environment at low temperatures, before entering an exotic disordered ground state below T=265mK. We report neutron scatterin
We use numerical linked cluster (NLC) expansions to compute the specific heat, C(T), and entropy, S(T), of a quantum spin ice model of Yb2Ti2O7 using anisotropic exchange interactions recently determined from inelastic neutron scattering measurements
Recently, the observation of large thermal Hall conductivities in correlated insulators with no apparent broken symmetry have generated immense interest and debates on the underlying ground states. Here, considering frustrated magnets with bond-depen
The thermodynamic properties of the pyrochlore Yb2Ti2O7 material are calculated using the numericallinked-cluster (NLC) calculation method for an effective anisotropic-exchange spin-1/2 Hamiltonian with parameters recently determined by fitting the n