ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal conductivity of quantum magnetic monopoles in the frustrated pyrochlore Yb2Ti2O7

187   0   0.0 ( 0 )
 نشر من قبل Yoshifumi Tokiwa
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report low-temperature thermal conductivity $kappa$ of pyrochlore Yb$_2$Ti$_2$O$_7$, which contains frustrated spin-ice correlations with significant quantum fluctuations. In the disordered spin-liquid regime, $kappa(H)$ exhibits a nonmonotonic magnetic field dependence, which is well explained by the strong spin-phonon scattering and quantum monopole excitations. We show that the excitation energy of quantum monopoles is strongly suppressed from that of dispersionless classical monopoles. Moreover, in stark contrast to the diffusive classical monopoles, the quantum monopoles have a very long mean free path. We infer that the quantum monopole is a novel heavy particle, presumably boson, which is highly mobile in a three-dimensional spin liquid.



قيم البحث

اقرأ أيضاً

In a ferromagnet, the spin excitations are the well-studied magnons. In frustrated quantum magnets, long-range magnetic order fails to develop despite a large exchange coupling between the spins. In contrast to the magnons in conventional magnets, th eir spin excitations are poorly understood. Are they itinerant or localized? Here we show that the thermal Hall conductivity $kappa_{xy}$ provides a powerful probe of spin excitations in the quantum spin ice pyrochlore Tb$_2$Ti$_2$O$_7$. The thermal Hall response is large even though the material is transparent. The Hall response arises from spin excitations with specific characteristics that distinguish them from magnons. At low temperature ($T<$ 1 K), the thermal conductivity imitates that of a dirty metal. Using the Hall angle, we construct a phase diagram showing how the excitations are suppressed by a magnetic field.
The pyrochlore material Yb2Ti2O7 displays unexpected quasi-two-dimensional (2D) magnetic correlations within a cubic lattice environment at low temperatures, before entering an exotic disordered ground state below T=265mK. We report neutron scatterin g measurements of the thermal evolution of the 2D spin correlations in space and time. Short range three dimensional (3D) spin correlations develop below 400 mK, accompanied by a suppression in the quasi-elastic (QE) scattering below ~ 0.2 meV. These show a slowly fluctuating ground state with spins correlated over short distances within a kagome-triangular-kagome (KTK) stack along [111], which evolves to isolated kagome spin-stars at higher temperatures. Furthermore, low-temperature specific heat results indicate a sample dependence to the putative transition temperature that is bounded by 265mK, which we discuss in the context of recent mean field theoretical analysis.
We use numerical linked cluster (NLC) expansions to compute the specific heat, C(T), and entropy, S(T), of a quantum spin ice model of Yb2Ti2O7 using anisotropic exchange interactions recently determined from inelastic neutron scattering measurements and find good agreement with experimental calorimetric data. In the perturbative weak quantum regime, this model has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signalling the paramagnetic to spin ice crossover followed at lower temperature by a sharp peak accompanying a first order phase transition to the ferrimagnetic state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We suggest that conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.
Recently, the observation of large thermal Hall conductivities in correlated insulators with no apparent broken symmetry have generated immense interest and debates on the underlying ground states. Here, considering frustrated magnets with bond-depen dent interactions, which are realized in the so-called Kitaev materials, we theoretically demonstrate that a large thermal Hall conductivity can originate from a classical ground state without any magnetic order. We discover a novel liquid state of magnetic vortices, which are inhomogeneous spin textures embedded in the background of polarized spins, under out-of-plane magnetic fields. In the classical regime, different configurations of vortices form a degenerate manifold. We study the static and dynamical properties of the magnetic vortex liquid state at zero and finite temperatures. In particular, we show that the spin excitation spectrum resembles a continuum of nearly flat Chern bands, which ultimately leads to a large thermal Hall conductivity. Possible connections to experiments are discussed.
The thermodynamic properties of the pyrochlore Yb2Ti2O7 material are calculated using the numericallinked-cluster (NLC) calculation method for an effective anisotropic-exchange spin-1/2 Hamiltonian with parameters recently determined by fitting the n eutron scattering spin wave data obtained at high magnetic field h. Magnetization, M(T,h), as a function of temperature T and for different magnetic fields h applied along the three high symmetry directions [100], [110] and [111], are compared with experimental measurements on the material for temperature T>1.8K. The excellent agreement between experimentally measured and calculated M(T,h) over the entire temperature and magnetic field range considered provides strong quantitative validation of the effective Hamiltonian. It also confirms that fitting the high-field neutron spin wave spectra in the polarized paramagnetic state is an excellent method for determining the microscopic exchange constants of rare-earth insulating magnets that are described by an effective spin-1/2 Hamiltonian. Finally, we present results which demonstrate that a recent analysis of the polarized neutron scattering intensity of Yb2Ti2O7 using a random phase approximation (RPA) method [Chang et al., Nature Communications {3}, 992 (2012)] does not provide a good description of M(T,h) for $Tlesssim 10$ K, that is in the entire temperature regime where correlations become non-negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا