ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamic properties of the Yb2Ti2O7 pyrochlore as a function of temperature and magnetic field: validation of a quantum spin ice exchange Hamiltonian

161   0   0.0 ( 0 )
 نشر من قبل Michel Gingras
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermodynamic properties of the pyrochlore Yb2Ti2O7 material are calculated using the numericallinked-cluster (NLC) calculation method for an effective anisotropic-exchange spin-1/2 Hamiltonian with parameters recently determined by fitting the neutron scattering spin wave data obtained at high magnetic field h. Magnetization, M(T,h), as a function of temperature T and for different magnetic fields h applied along the three high symmetry directions [100], [110] and [111], are compared with experimental measurements on the material for temperature T>1.8K. The excellent agreement between experimentally measured and calculated M(T,h) over the entire temperature and magnetic field range considered provides strong quantitative validation of the effective Hamiltonian. It also confirms that fitting the high-field neutron spin wave spectra in the polarized paramagnetic state is an excellent method for determining the microscopic exchange constants of rare-earth insulating magnets that are described by an effective spin-1/2 Hamiltonian. Finally, we present results which demonstrate that a recent analysis of the polarized neutron scattering intensity of Yb2Ti2O7 using a random phase approximation (RPA) method [Chang et al., Nature Communications {3}, 992 (2012)] does not provide a good description of M(T,h) for $Tlesssim 10$ K, that is in the entire temperature regime where correlations become non-negligible.



قيم البحث

اقرأ أيضاً

We use numerical linked cluster (NLC) expansions to compute the specific heat, C(T), and entropy, S(T), of a quantum spin ice model of Yb2Ti2O7 using anisotropic exchange interactions recently determined from inelastic neutron scattering measurements and find good agreement with experimental calorimetric data. In the perturbative weak quantum regime, this model has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signalling the paramagnetic to spin ice crossover followed at lower temperature by a sharp peak accompanying a first order phase transition to the ferrimagnetic state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We suggest that conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.
The pyrochlore material Yb2Ti2O7 displays unexpected quasi-two-dimensional (2D) magnetic correlations within a cubic lattice environment at low temperatures, before entering an exotic disordered ground state below T=265mK. We report neutron scatterin g measurements of the thermal evolution of the 2D spin correlations in space and time. Short range three dimensional (3D) spin correlations develop below 400 mK, accompanied by a suppression in the quasi-elastic (QE) scattering below ~ 0.2 meV. These show a slowly fluctuating ground state with spins correlated over short distances within a kagome-triangular-kagome (KTK) stack along [111], which evolves to isolated kagome spin-stars at higher temperatures. Furthermore, low-temperature specific heat results indicate a sample dependence to the putative transition temperature that is bounded by 265mK, which we discuss in the context of recent mean field theoretical analysis.
Pyrochlore magnets are candidates for spin-ice behavior. We present theoretical simulations of relevance for the pyrochlore family R2Ti2O7 (R= rare earth) supported by magnetothermal measurements on selected systems. By considering long ranged dipole -dipole as well as short-ranged superexchange interactions we get three distinct behaviours: (i) an ordered doubly degenerate state, (ii) a highly disordered state with a broad transition to paramagnetism, (iii) a partially ordered state with a sharp transition to paramagnetism. Thus these competing interactions can induce behaviour very different from conventional ``spin ice. Closely corresponding behaviour is seen in the real compounds---in particular Ho2Ti2O7 corresponds to case (iii) which has not been discussed before, rather than (ii) as suggested earlier.
The rare earth pyrochlore magnet Yb2Ti2O7 is among a handful of materials that apparently exhibit no long range order down to the lowest explored temperatures and well below the Curie-Weiss temperature. Paramagnetic neutron scattering on a single cry stal sample has revealed the presence of anisotropic correlations and recent work has led to the proposal of a detailed microscopic Hamiltonian for this material involving significantly anisotropic exchange. In this article, we compute the local sublattice susceptibility of Yb2Ti2O7 from the proposed model and compare with the measurements of Cao and coworkers [Physical Review Letters, {103}, 056402 (2009)], finding quite good agreement. In contrast, a model with only isotropic exchange and long range magnetostatic dipoles gives rise to a local susceptiblity that is inconsistent with the data.
126 - Randy S. Fishman 2005
Although diagrammatic perturbation theory fails for the dynamical-mean field theory of the double-exchange model, the theory is nevertheless Phi-derivable and hence thermodynamically consistent, meaning that the same thermodynamic properties are obta ined from either the partition function or the Greens function. We verify this consistency by evaluating the magnetic susceptibility and Curie temperature for any Hunds coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا