ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Spectral Gap of a Quantum Graph

46   0   0.0 ( 0 )
 نشر من قبل Gabriela Malenova
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of finding universal bounds of isoperimetric or isodiametric type on the spectral gap of the Laplacian on a metric graph with natural boundary conditions at the vertices, in terms of various analytical and combinatorial properties of the graph: its total length, diameter, number of vertices and number of edges. We investigate which combinations of parameters are necessary to obtain non-trivial upper and lower bounds and obtain a number of sharp estimates in terms of these parameters. We also show that, in contrast to the Laplacian matrix on a combinatorial graph, no bound depending only on the diameter is possible. As a special case of our results on metric graphs, we deduce estimates for the normalised Laplacian matrix on combinatorial graphs which, surprisingly, are sometimes sharper than the ones obtained by purely combinatorial methods in the graph theoretical literature.

قيم البحث

اقرأ أيضاً

We study the (massless) Dirac operator on a 3-sphere equipped with Riemannian metric. For the standard metric the spectrum is known. In particular, the eigenvalues closest to zero are the two double eigenvalues +3/2 and -3/2. Our aim is to analyse th e behaviour of eigenvalues when the metric is perturbed in an arbitrary smooth fashion from the standard one. We derive explicit perturbation formulae for the two eigenvalues closest to zero, taking account of the second variations. Note that these eigenvalues remain double eigenvalues under perturbations of the metric: they cannot split because of a particular symmetry of the Dirac operator in dimension three (it commutes with the antilinear operator of charge conjugation). Our perturbation formulae show that in the first approximation our two eigenvalues maintain symmetry about zero and are completely determined by the increment of Riemannian volume. Spectral asymmetry is observed only in the second approximation of the perturbation process. As an example we consider a special family of metrics, the so-called generalized Berger spheres, for which the eigenvalues can be evaluated explicitly.
We make a spectral analysis of the massive Dirac operator in a tubular neighborhood of an unbounded planar curve,subject to infinite mass boundary conditions. Under general assumptions on the curvature, we locate the essential spectrum and derive an effective Hamiltonian on the base curve which approximates the original operator in the thin-strip limit. We also investigate the existence of bound states in the non-relativistic limit and give a geometric quantitative condition for the bound states to exist.
We analyze the spectrum of the massless Dirac operator on the 3-torus $mathbb{T}^3$. It is known that it is possible to calculate this spectrum explicitly, that it is symmetric about zero and that each eigenvalue has even multiplicity. However, for a general oriented closed Riemannian 3-manifold $(M,g)$ there is no reason for the spectrum of the massless Dirac operator to be symmetric. Using perturbation theory, we derive the asymptotic formulae for its eigenvalues and prove that by the perturbation of the Euclidean metric on the 3-torus, it is possible to obtain spectral asymmetry of the massless Dirac operator in the axisymmetric case.
For the Schrodinger equation $-d^2 u/dx^2 + q(x)u = lambda u$ on a finite $x$-interval, there is defined an asymmetry function $a(lambda;q)$, which is entire of order $1/2$ and type $1$ in $lambda$. Our main result identifies the classes of square-in tegrable potentials $q(x)$ that possess a common asymmetry function. For any given $a(lambda)$, there is one potential for each Dirichlet spectral sequence.
We study directed, weighted graphs $G=(V,E)$ and consider the (not necessarily symmetric) averaging operator $$ (mathcal{L}u)(i) = -sum_{j sim_{} i}{p_{ij} (u(j) - u(i))},$$ where $p_{ij}$ are normalized edge weights. Given a vertex $i in V$, we defi ne the diffusion distance to a set $B subset V$ as the smallest number of steps $d_{B}(i) in mathbb{N}$ required for half of all random walks started in $i$ and moving randomly with respect to the weights $p_{ij}$ to visit $B$ within $d_{B}(i)$ steps. Our main result is that the eigenfunctions interact nicely with this notion of distance. In particular, if $u$ satisfies $mathcal{L}u = lambda u$ on $V$ and $$ B = left{ i in V: - varepsilon leq u(i) leq varepsilon right} eq emptyset,$$ then, for all $i in V$, $$ d_{B}(i) log{left( frac{1}{|1-lambda|} right) } geq log{left( frac{ |u(i)| }{|u|_{L^{infty}}} right)} - log{left(frac{1}{2} + varepsilonright)}.$$ $d_B(i)$ is a remarkably good approximation of $|u|$ in the sense of having very high correlation. The result implies that the classical one-dimensional spectral embedding preserves particular aspects of geometry in the presence of clustered data. We also give a continuous variant of the result which has a connection to the hot spots conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا