ﻻ يوجد ملخص باللغة العربية
We analyze the spectrum of the massless Dirac operator on the 3-torus $mathbb{T}^3$. It is known that it is possible to calculate this spectrum explicitly, that it is symmetric about zero and that each eigenvalue has even multiplicity. However, for a general oriented closed Riemannian 3-manifold $(M,g)$ there is no reason for the spectrum of the massless Dirac operator to be symmetric. Using perturbation theory, we derive the asymptotic formulae for its eigenvalues and prove that by the perturbation of the Euclidean metric on the 3-torus, it is possible to obtain spectral asymmetry of the massless Dirac operator in the axisymmetric case.
We study the (massless) Dirac operator on a 3-sphere equipped with Riemannian metric. For the standard metric the spectrum is known. In particular, the eigenvalues closest to zero are the two double eigenvalues +3/2 and -3/2. Our aim is to analyse th
We construct the propagator of the massless Dirac operator $W$ on a closed Riemannian 3-manifold as the sum of two invariantly defined oscillatory integrals, global in space and in time, with distinguished complex-valued phase functions. The two osci
We address the question whether there is a three-dimensional bounded domain such that the Neumann--Poincare operator defined on its boundary has infinitely many negative eigenvalues. It is proved in this paper that tori have such a property. It is do
For the Schrodinger equation $-d^2 u/dx^2 + q(x)u = lambda u$ on a finite $x$-interval, there is defined an asymmetry function $a(lambda;q)$, which is entire of order $1/2$ and type $1$ in $lambda$. Our main result identifies the classes of square-in
In this note the three dimensional Dirac operator $A_m$ with boundary conditions, which are the analogue of the two dimensional zigzag boundary conditions, is investigated. It is shown that $A_m$ is self-adjoint in $L^2(Omega;mathbb{C}^4)$ for any op