ترغب بنشر مسار تعليمي؟ اضغط هنا

Analyzing the spectral (a)symmetry of the massless Dirac operator on the 3-torus

48   0   0.0 ( 0 )
 نشر من قبل Vedad Pasic Prof
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the spectrum of the massless Dirac operator on the 3-torus $mathbb{T}^3$. It is known that it is possible to calculate this spectrum explicitly, that it is symmetric about zero and that each eigenvalue has even multiplicity. However, for a general oriented closed Riemannian 3-manifold $(M,g)$ there is no reason for the spectrum of the massless Dirac operator to be symmetric. Using perturbation theory, we derive the asymptotic formulae for its eigenvalues and prove that by the perturbation of the Euclidean metric on the 3-torus, it is possible to obtain spectral asymmetry of the massless Dirac operator in the axisymmetric case.



قيم البحث

اقرأ أيضاً

We study the (massless) Dirac operator on a 3-sphere equipped with Riemannian metric. For the standard metric the spectrum is known. In particular, the eigenvalues closest to zero are the two double eigenvalues +3/2 and -3/2. Our aim is to analyse th e behaviour of eigenvalues when the metric is perturbed in an arbitrary smooth fashion from the standard one. We derive explicit perturbation formulae for the two eigenvalues closest to zero, taking account of the second variations. Note that these eigenvalues remain double eigenvalues under perturbations of the metric: they cannot split because of a particular symmetry of the Dirac operator in dimension three (it commutes with the antilinear operator of charge conjugation). Our perturbation formulae show that in the first approximation our two eigenvalues maintain symmetry about zero and are completely determined by the increment of Riemannian volume. Spectral asymmetry is observed only in the second approximation of the perturbation process. As an example we consider a special family of metrics, the so-called generalized Berger spheres, for which the eigenvalues can be evaluated explicitly.
We construct the propagator of the massless Dirac operator $W$ on a closed Riemannian 3-manifold as the sum of two invariantly defined oscillatory integrals, global in space and in time, with distinguished complex-valued phase functions. The two osci llatory integrals -- the positive and the negative propagators -- correspond to positive and negative eigenvalues of $W$, respectively. This enables us to provide a global invariant definition of the full symbols of the propagators (scalar matrix-functions on the cotangent bundle), a closed formula for the principal symbols and an algorithm for the explicit calculation of all their homogeneous components. Furthermore, we obtain small time expansions for principal and subprincipal symbols of the propagators in terms of geometric invariants. Lastly, we use our results to compute the third local Weyl coefficients in the asymptotic expansion of the eigenvalue counting functions of $W$.
We address the question whether there is a three-dimensional bounded domain such that the Neumann--Poincare operator defined on its boundary has infinitely many negative eigenvalues. It is proved in this paper that tori have such a property. It is do ne by decomposing the Neumann--Poincare operator on tori into infinitely many self-adjoint compact operators on a Hilbert space defined on the circle using the toroidal coordinate system and the Fourier basis, and then by proving that the numerical range of infinitely many operators in the decomposition has both positive and negative values.
For the Schrodinger equation $-d^2 u/dx^2 + q(x)u = lambda u$ on a finite $x$-interval, there is defined an asymmetry function $a(lambda;q)$, which is entire of order $1/2$ and type $1$ in $lambda$. Our main result identifies the classes of square-in tegrable potentials $q(x)$ that possess a common asymmetry function. For any given $a(lambda)$, there is one potential for each Dirichlet spectral sequence.
88 - Markus Holzmann 2020
In this note the three dimensional Dirac operator $A_m$ with boundary conditions, which are the analogue of the two dimensional zigzag boundary conditions, is investigated. It is shown that $A_m$ is self-adjoint in $L^2(Omega;mathbb{C}^4)$ for any op en set $Omega subset mathbb{R}^3$ and its spectrum is described explicitly in terms of the spectrum of the Dirichlet Laplacian in $Omega$. In particular, whenever the spectrum of the Dirichlet Laplacian is purely discrete, then also the spectrum of $A_m$ consists of discrete eigenvalues that accumulate at $pm infty$ and one additional eigenvalue of infinite multiplicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا