ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of the charge density waves in under-doped YBa$_2$Cu$_3$O$_{6.54}$ revealed by X-ray measurements of the ionic displacements

302   0   0.0 ( 0 )
 نشر من قبل Edward Forgan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

All underdoped high-temperature cuprate superconductors appear to exhibit charge density wave (CDW) order, but both the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDW in an archetypical cuprate YBa$_2$Cu$_3$O$_{6.54}$ at its superconducting transition temperature Tc ~ 60 K. We find that the CDWs present in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in a CDW have two components: one perpendicular to the CuO$_2$ planes, and another parallel to these planes, which is out of phase with the first. The largest displacements are those of the planar oxygen atoms and are perpendicular to the CuO$_2$ planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDW will lead to local variations in the doping (or electronic structure) giving an explicit explanation of the appearance of density-wave states with broken symmetry in scanning tunnelling microscopy (STM) and soft X-ray measurements.

قيم البحث

اقرأ أيضاً

We report a comprehensive Cu L$_3$-edge resonant x-ray scattering study of two- and three-dimensional (2D and 3D) incommensurate charge correlations in single crystals of the underdoped high-temperature superconductor YBa$_2$Cu$_3$O$_{6.67}$ under un iaxial compression up to 1% along the two inequivalent Cu-O-Cu bond directions (a and b) in the CuO$_2$ planes. The pressure response of the 2D charge correlations is symmetric: pressure along a enhances correlations along b, and vice versa. Our results imply that the underlying order parameter is uniaxial. In contrast, 3D long-range charge order is only observed along b in response to compression along a. Spectroscopic resonant x-ray scattering measurements show that the 3D charge order resides exclusively in the CuO$_2$ planes and may thus be generic to the cuprates. We discuss implications of these results for models of electronic nematicity and for the interplay between charge order and superconductivity.
X-ray diffraction measurements show that the high-temperature superconductor YBa$_2$Cu$_3$O$_{6.54}$, with ortho-II oxygen order, has charge density wave order (CDW) in the absence of an applied magnetic field. The dominant wavevector of the CDW is $ mathbf{q}_{mathrm{CDW}} = (0, 0.328(2), 0.5)$, with the in-plane component parallel to the $mathbf{b}$-axis (chain direction). It has a similar incommensurability to that observed in ortho-VIII and ortho-III samples, which have different dopings and oxygen orderings. Our results for ortho-II contrast with recent high-field NMR measurements, which suggest a commensurate wavevector along the $mathbf{a}$-axis. We discuss the relationship between spin and charge correlations in YBa$_2$Cu$_3$O$_{y}$, and recent high-field quantum oscillation, NMR and ultrasound experiments.
We report on the effects of hydrostatic pressure (HP) on the charge density wave observed in underdoped cuprates. We studied YBa$_2$Cu$_3$O$_{6.6}$ ($T_c$=61 K) using high-resolution inelastic x-ray scattering (IXS), and reveal an extreme sensitivity of the phonon anomalies related to the charge density wave (CDW) order to HP. The amplitudes of the normal state broadening and superconductivity induced phonon softening at Q$_{CDW}$ rapidly decrease as HP is applied, resulting in the complete suppression of signatures of the CDW below $sim$1 GPa. Additional IXS measurements on YBa$_2$Cu$_3$O$_{6.75}$ demonstrate that this very rapid effect cannot be explained by pressure-induced modification of the doping level and highlight the different role of external pressure and doping in tuning the phase diagram of the cuprates. Our results provide new insights into the mechanisms underlying the CDW formation and its interplay with superconductivity.
We report the results a comprehensive study of charge density wave (CDW) correlations in untwinned YBCO6+x single crystals with 0.4<x<0.99 using Cu-L3 edge resonant x-ray scattering (RXS). Evidence of CDW formation is found for 0.45<x<0.93, but not f or samples with x<0.44 that exhibit incommensurate spin-density-wave order, and in slightly overdoped samples with x=0.99. This suggests the presence of two proximate zero-temperature CDW critical points at doping pc1~0.08 and pc2~0.18. The CDW reflections are observed at incommensurate in-plane wave vectors (d_a, 0) and (0, d_b). Both decrease linearly with increasing doping, in agreement with recent reports on Bi-based high-Tc superconductors, but in sharp contrast to the behavior of the 214 family. The CDW intensity and correlation length exhibit maxima at p~0.12, coincident with a plateau in the superconducting transition temperature Tc. The onset temperature of the CDW reflections depends non-monotonically on p, with a maximum of~160 K for p~0.12. The RXS reflections exhibit a uniaxial intensity anisotropy. We further observe a depression of CDW correlations upon cooling below Tc, and (for samples with p> 0.09) an enhancement of the signal when an external magnetic field up to 6 T is applied in the superconducting state. For samples with p~0.08, where prior work has revealed a field-enhancement of incommensurate magnetic order, the RXS signal is field-independent. This supports a previously suggested scenario in which incommensurate charge and spin orders compete against each other, in addition to individually competing against. We discuss the relationship of these results to stripe order 214, the pseudogap phenomenon, superconducting fluctuations, and quantum oscillations.
Hole-doped cuprate superconductors show a ubiquitous tendency towards charge order. Although onset of superconductivity is known to suppress charge order, there has not so far been a decisive demonstration of the reverse process, namely, the effect o f charge order on superconductivity. To gain such information, we report here the dependence of the critical temperature $T_{mathrm{c}}$ of YBa$_2$Cu$_3$O$_{6.67}$ on in-plane uniaxial stress up to 2 GPa. At a compression of about 1 GPa along the $a$ axis, 3D-correlated charge density wave (3D CDW) order appears. We find that $T_{mathrm{c}}$ decreases steeply as the applied stress crosses 1 GPa, showing that the appearance of 3D CDW order strongly suppresses superconductivity. Through the elastocaloric effect we resolve the heat capacity anomaly at $T_{mathrm{c}}$, and find that it does not change drastically as the 3D CDW onsets, which shows that the condensation energy of the 3D CDW is considerably less than that of the superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا