ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of superconductivity by charge density wave order in YBa$_2$Cu$_3$O$_{6.67}$

105   0   0.0 ( 0 )
 نشر من قبل Mark Barber
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hole-doped cuprate superconductors show a ubiquitous tendency towards charge order. Although onset of superconductivity is known to suppress charge order, there has not so far been a decisive demonstration of the reverse process, namely, the effect of charge order on superconductivity. To gain such information, we report here the dependence of the critical temperature $T_{mathrm{c}}$ of YBa$_2$Cu$_3$O$_{6.67}$ on in-plane uniaxial stress up to 2 GPa. At a compression of about 1 GPa along the $a$ axis, 3D-correlated charge density wave (3D CDW) order appears. We find that $T_{mathrm{c}}$ decreases steeply as the applied stress crosses 1 GPa, showing that the appearance of 3D CDW order strongly suppresses superconductivity. Through the elastocaloric effect we resolve the heat capacity anomaly at $T_{mathrm{c}}$, and find that it does not change drastically as the 3D CDW onsets, which shows that the condensation energy of the 3D CDW is considerably less than that of the superconductivity.



قيم البحث

اقرأ أيضاً

The charge density wave in the high-temperature superconductor YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) is now known to have two different ordering tendencies differentiated by their $c$-axis correlations. These correspond to ferro- (F-CDW) and antiferro- (AF-C DW) couplings between CDW in neighbouring CuO$_2$ bilayers. This discovery has prompted a number of fundamental questions. For example, how does superconductivity adjust to two competing orders and are either of these orders responsible for the electronic reconstruction? Here we use high-energy x-ray diffraction to study YBa$_2$Cu$_3$O$_{6.67}$ as a function of magnetic field and temperature. We show that regions of the sample with F-CDW correlations suppress superconductivity more strongly than those with AF-CDW correlations. This implies that an inhomogeneous superconducting state exists, in which some regions show a weak or fragile form of superconductivity. By comparison of F-CDW and AF-CDW correlation lengths, it is furthermore concluded that F-CDW ordering is sufficiently long-range to modify the electronic structure. Our study thus suggests that F-CDW correlations have an important impact on superconducting and normal state properties of underdoped YBCO.
We report on the effects of hydrostatic pressure (HP) on the charge density wave observed in underdoped cuprates. We studied YBa$_2$Cu$_3$O$_{6.6}$ ($T_c$=61 K) using high-resolution inelastic x-ray scattering (IXS), and reveal an extreme sensitivity of the phonon anomalies related to the charge density wave (CDW) order to HP. The amplitudes of the normal state broadening and superconductivity induced phonon softening at Q$_{CDW}$ rapidly decrease as HP is applied, resulting in the complete suppression of signatures of the CDW below $sim$1 GPa. Additional IXS measurements on YBa$_2$Cu$_3$O$_{6.75}$ demonstrate that this very rapid effect cannot be explained by pressure-induced modification of the doping level and highlight the different role of external pressure and doping in tuning the phase diagram of the cuprates. Our results provide new insights into the mechanisms underlying the CDW formation and its interplay with superconductivity.
We report a comprehensive Cu L$_3$-edge resonant x-ray scattering study of two- and three-dimensional (2D and 3D) incommensurate charge correlations in single crystals of the underdoped high-temperature superconductor YBa$_2$Cu$_3$O$_{6.67}$ under un iaxial compression up to 1% along the two inequivalent Cu-O-Cu bond directions (a and b) in the CuO$_2$ planes. The pressure response of the 2D charge correlations is symmetric: pressure along a enhances correlations along b, and vice versa. Our results imply that the underlying order parameter is uniaxial. In contrast, 3D long-range charge order is only observed along b in response to compression along a. Spectroscopic resonant x-ray scattering measurements show that the 3D charge order resides exclusively in the CuO$_2$ planes and may thus be generic to the cuprates. We discuss implications of these results for models of electronic nematicity and for the interplay between charge order and superconductivity.
The competition between superconductivity and charge density wave (CDW) order in underdoped cuprates has now been widely reported, but the role of disorder in this competition has yet to be fully resolved. A central question is whether disorder sets the length scale of the CDW order, for instance by pinning charge density fluctuations or disrupting an otherwise long range order. Using resonant soft x-ray scattering, we investigate the sensitivity of CDW order in YBa$_2$Cu$_3$O$_{6+x}$ (YBCO) to varying levels of oxygen disorder. We find that quench cooling YBCO$_{6.67}$ (YBCO$_{6.75}$) crystals to destroy their o-V and o-VIII (o-III) chains decreases the intensity of the CDW superlattice peak by a factor of 1.9 (1.3), but has little effect on the CDW correlation length, incommensurability, and temperature dependence. This reveals that while quenched oxygen disorder influences the CDW order parameter, the spatial extent of the CDW order is insensitive to the level of quenched oxygen disorder and may instead be a consequence of competition with superconductivity.
The application of large magnetic fields ($B sim B_{c2}$) to layered cuprates suppresses their high temperature superconducting behaviour and reveals competing ground states. In the widely-studied material YBa$_2$Cu$_3$O$_{6+x}$ (YBCO), underdoped ($ p sim 1/8$) samples show signatures of field-induced electronic and structural changes at low temperatures. However, the microscopic nature of the field-induced reconstruction and the high-field state are unclear. Here we report an x-ray study of the high-field charge density wave (CDW) in YBCO, for doping, $0.1 lesssim p lesssim 0.13$. For $p sim 0.123$, we find that a field ($B sim 10$~T) induces new CDW correlations along the CuO chain ($b$) direction only, leading to a 3-D ordered state along this direction at $B sim 15$~T. The CDW signal along the $a$-direction is also enhanced by field, but does not develop a new pattern of correlations. We find that field modifies the coupling between the CuO$_2$ bilayers in the YBCO structure, and causes the sudden appearance of 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing recently suggested Fermi surface reconstruction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا