ترغب بنشر مسار تعليمي؟ اضغط هنا

Ensemble X-ray variability of Active Galactic Nuclei. II. Excess Variance and updated Structure Function

178   0   0.0 ( 0 )
 نشر من قبل Fausto Vagnetti
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most investigations of the X-ray variability of active galactic nuclei (AGN) have been concentrated on the detailed analyses of individual, nearby sources. A relatively small number of studies have treated the ensemble behaviour of the more general AGN population in wider regions of the luminosity-redshift plane. We want to determine the ensemble variability properties of a rich AGN sample, called Multi-Epoch XMM Serendipitous AGN Sample (MEXSAS), extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue (XMMSSC-DR5), with redshift between 0.1 and 5, and X-ray luminosities in the 0.5-4.5 keV band between 10^42 and 10^47 erg/s. We urge caution on the use of the normalised excess variance (NXS), noting that it may lead to underestimate variability if used improperly. We use the structure function (SF), updating our previous analysis for a smaller sample. We propose a correction to the NXS variability estimator, accounting for the light curve duration in the rest frame on the basis of the knowledge of the variability behaviour gained by SF studies. We find an ensemble increase of the X-ray variability with the rest-frame time lag tau, given by tau^0.12. We confirm an inverse dependence on the X-ray luminosity, approximately as L_X^-0.19. We analyse the SF in different X-ray bands, finding a dependence of the variability on the frequency as nu^-0.15, corresponding to a softer when brighter trend. In turn, this dependence allows us to parametrically correct the variability estimated in observer-frame bands to that in the rest frame, resulting in a moderate shift upwards (V-correction). Ensemble X-ray variability of AGNs is best described by the structure function. An improper use of the normalised excess variance may lead to an underestimate of the intrinsic variability, so that appropriate corrections to the data or the models must be applied to prevent these effects.



قيم البحث

اقرأ أيضاً

We present results on a systematic study of flux variability on hourly time-scales in a large sample of active galactic nuclei (AGN) in the 3-79 keV band using data from Nuclear Spectroscopic Telescope Array. Our sample consists of 4 BL Lac objects ( BL Lacs), 3 flat spectrum radio quasars (FSRQs) 24 Seyfert 1, 42 Seyfert 2 and 8 narrow line Seyfert 1 (NLSy1) galaxies. We find that in the 3-79 keV band, about 65% of the sources in our sample show significant variations on hourly time scales. Using Mann-Whitney U-test and Kolmogorov-Smirnov test, we find no difference in the variability behaviour between Seyfert 1 and 2 galaxies. The blazar sources (FSRQs and BL Lacs) in our sample, are more variable than Seyfert galaxies that include Seyfert 1 and Seyfert 2 in the soft (3-10 keV), hard (10-79 keV) and total (3-79 keV) bands. NLSy1 galaxies show the highest duty cycle of variability (87%), followed by BL Lacs (82%), Seyfert galaxies (56%) and FSRQs (23%). We obtained flux doubling/halving time in the hard X-ray band less than 10 min in 11 sources. The flux variations between the hard and soft bands in all the sources in our sample are consistent with zero lag.
The X-ray variability of the Active Galactic Nuclei (AGN) has been most often investigated with studies of individual, nearby, sources, and only a few ensemble analyses have been applied to large samples in wide ranges of luminosity and redshift. We want to determine the ensemble variability properties of two serendipitously selected AGN samples extracted from the catalogues of XMM-Newton and Swift, with redshift between ~0.2 and ~4.5, and X-ray luminosities, in the 0.5-4.5 keV band, between ~10^43 erg/s and ~10^46 erg/s. We use the structure function (SF), which operates in the time domain, and allows for an ensemble analysis even when only a few observations are available for individual sources and the power spectral density (PSD) cannot be derived. SF is also more appropriate than fractional variability and excess variance, because such parameters are biased by the duration of the monitoring time interval in the rest-frame, and thus by cosmological time dilation. We find statistically consistent results for the two samples, with the SF described by a power law of the time lag, approximately as SF propto tau^0.1. We do not find evidence of the break in the SF, at variance with the case of lower luminosity AGNs. We confirm a strong anti-correlation of the variability with X-ray luminosity, accompanied by a change of the slope of the SF. We find evidence in support of a weak, intrinsic, average increase of X-ray variability with redshift. The change of amplitude and slope of the SF with X-ray luminosity provides new constraints on both single oscillator models and multiple subunits models of variability.
The variability of the X-ray spectra of active galactic nuclei (AGN) usually includes a change of the spectral slope. This has been investigated for a small sample of local AGNs by Sobolewska and Papadakis, who found that slope variations are well co rrelated with flux variations, and that spectra are typically steeper in the bright phase (softer when brighter behaviour). Not much information is available for the spectral variability of high-luminosity AGNs and quasars. In order to investigate this phenomenon, we use data from the XMM-Newton Serendipitous Source Catalogue, Data Release 5, which contains X-ray observations for a large number of active galactic nuclei in a wide luminosity and redshift range, for several different epochs. This allows to perform an ensemble analysis of the spectral variability for a large sample of quasars. We quantify the spectral variability through the spectral variability parameter $beta$, defined as the ratio between the change in spectral slope and the corresponding logarithmic flux variation. We find that the spectral variability of quasars has a softer when brighter behaviour, similarly to local AGNs.
Recent time-resolved spectral studies of a few Active Galactic Nuclei in hard X-rays revealed occultations of the X-ray primary source probably by Broad Line Region (BLR) clouds. An important open question on the structure of the circumnuclear medium of AGN is whether this phenomenon is common, i.e. whether a significant fraction of the X-ray absorption in AGN is due to BLR clouds. Here we present the first attempt to perform this kind of analysis in a homogeneous way, on a statistically representative sample of AGN, consisting of the ~40 brightest sources with long XMM-Newton and/or Suzaku observations. We describe our method, based on a simple analysis of hardness-ratio light curves, and its validation through a complete spectroscopic analysis of a few cases. We find that X-ray eclipses, most probably due to clouds at the distance of the BLR, are common in sources where the expected occultation time is compatible with the observation time, while they are not found in sources with longer estimated occultation times. Overall, our results show that occultations by BLR clouds may be responsible for most of the observed X-ray spectral variability at energies higher than 2 keV, on time scales longer than a few ks.
139 - S. F. Hoenig 2013
X-ray surveys have revealed a new class of active galactic nuclei (AGN) with a very low observed fraction of scattered soft X-rays, f_scat < 0.5%. Based on X-ray modeling these X-ray new-type, or low observed X-ray scattering (hereafter:low-scatterin g) sources have been interpreted as deeply-buried AGN with a high covering factor of gas. In this paper we address the questions whether the host galaxies of low-scattering AGN may contribute to the observed X-ray properties, and whether we can find any direct evidence for high covering factors from the infrared (IR) emission. We find that X-ray low-scattering AGN are preferentially hosted by highly-inclined galaxies or merger systems as compared to other Seyfert galaxies, increasing the likelihood that the line-of-sight toward the AGN intersects with high columns of host-galactic gas and dust. Moreover, while a detailed analysis of the IR emission of low-scattering AGN ESO 103-G35 remains inconclusive, we do not find any indication of systematically higher dust covering factors in a sample of low-scattering AGN based on their IR emission. For ESO 103-G35, we constrained the temperature, mass and location of the IR emitting dust which is consistent with expectations for the dusty torus. However, a deep silicate absorption feature probably from much cooler dust suggests an additional screen absorber on larger scales within the host galaxy. Taking these findings together, we propose that the low f_scat observed in low-scattering AGN is not necessarily the result of circumnuclear dust but could originate from interference of host-galactic gas with a column density of the order of 10^22 cm^-2 with the line-of-sight. We discuss implications of this hypothesis for X-ray models, high-ionization emission lines, and observed star-formation activity in these objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا