ترغب بنشر مسار تعليمي؟ اضغط هنا

A lifted square formulation for certifiable Schubert calculus

31   0   0.0 ( 0 )
 نشر من قبل Frank Sottile
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Formulating a Schubert problem as the solutions to a system of equations in either Plucker space or in the local coordinates of a Schubert cell usually involves more equations than variables. Using reduction to the diagonal, we previously gave a primal-dual formulation for Schubert problems that involved the same number of variables as equations (a square formulation). Here, we give a different square formulation by lifting incidence conditions which typically involves fewer equations and variables. Our motivation is certification of numerical computation using Smales alpha-theory.

قيم البحث

اقرأ أيضاً

In the recent paper [arXiv:1612.06893] P. Burgisser and A. Lerario introduced a geometric framework for a probabilistic study of real Schubert Problems. They denoted by $delta_{k,n}$ the average number of projective $k$-planes in $mathbb{R}textrm{P}^ n$ that intersect $(k+1)(n-k)$ many random, independent and uniformly distributed linear projective subspaces of dimension $n-k-1$. They called $delta_{k,n}$ the expected degree of the real Grassmannian $mathbb{G}(k,n)$ and, in the case $k=1$, they proved that: $$ delta_{1,n}= frac{8}{3pi^{5/2}} cdot left(frac{pi^2}{4}right)^n cdot n^{-1/2} left( 1+mathcal{O}left(n^{-1}right)right) .$$ Here we generalize this result and prove that for every fixed integer $k>0$ and as $nto infty$, we have begin{equation*} delta_{k,n}=a_k cdot left(b_kright)^ncdot n^{-frac{k(k+1)}{4}}left(1+mathcal{O}(n^{-1})right) end{equation*} where $a_k$ and $b_k$ are some (explicit) constants, and $a_k$ involves an interesting integral over the space of polynomials that have all real roots. For instance: $$delta_{2,n}= frac{9sqrt{3}}{2048sqrt{2pi}} cdot 8^n cdot n^{-3/2} left( 1+mathcal{O}left(n^{-1}right)right).$$ Moreover we prove that these numbers belong to the ring of periods intoduced by Kontsevich and Zagier and we give an explicit formula for $delta_{1,n}$ involving a one dimensional integral of certain combination of Elliptic functions.
Many aspects of Schubert calculus are easily modeled on a computer. This enables large-scale experimentation to investigate subtle and ill-understood phenomena in the Schubert calculus. A well-known web of conjectures and results in the real Schubert calculus has been inspired by this continuing experimentation. A similarly rich story concerning intrinsic structure, or Galois groups, of Schubert problems is also beginning to emerge from experimentation. This showcases new possibilities for the use of computers in mathematical research.
The Macaulay2 package NumericalSchubertCalculus provides methods for the numerical computation of Schubert problems on Grassmannians. It implements both the Pieri homotopy algorithm and the Littlewood-Richardson homotopy algorithm. Each algorithm has two independent implementations in this package. One is in the scripting language of Macaulay2 using the package NumericalAlgebraicGeometry, and the other is in the compiled code of PHCpack.
We show a Z^2-filtered algebraic structure and a quantum to classical principle on the torus-equivariant quantum cohomology of a complete flag variety of general Lie type, generalizing earlier works of Leung and the second author. We also provide var ious applications on equivariant quantum Schubert calculus, including an equivariant quantum Pieri rule for any partial flag variety of Lie type A.
We describe a new approach to the Schubert calculus on complete flag varieties using the volume polynomial associated with Gelfand-Zetlin polytopes. This approach allows us to compute the intersection products of Schubert cycles by intersecting faces of a polytope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا