ترغب بنشر مسار تعليمي؟ اضغط هنا

Design, Construction and Operation of a Low-Power, Autonomous Radio-Frequency Data-Acquisition Station for the TARA Experiment

57   0   0.0 ( 0 )
 نشر من قبل Dave Besson
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Employing a 40-kW radio-frequency transmitter just west of Delta, UT, and operating at 54.1 MHz, the TARA (Telescope Array RAdar) experiment seeks radar detection of extensive air showers (EAS) initiated by ultra-high energy cosmic rays (UHECR). For UHECR with energies in excess of $10^{19}$ eV, the Doppler-shifted chirps resulting from EAS shower core radar reflections should be observable above background (dominantly galactic) at distances of tens of km from the TARA transmitter. In order to stereoscopically reconstruct cosmic ray chirps, two remote, autonomous self-powered receiver stations have been deployed. Each remote station (RS) combines both low power consumption as well as low cost. Triggering logic, the powering and communication systems, and some specific details of hardware components are discussed.

قيم البحث

اقرأ أيضاً

A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF4. It has a 50 cm long radiator directly coupled in a window- less config uration to a readout element consisting of a triple GEM stack, with a CsI photocathode evaporated on the top surface of the top GEM and pad readout at the bottom of the stack. This paper gives a comprehensive account of the construction, operation and in-beam performance of the detector.
The Auger Muon Infill Ground Array (AMIGA) is part of the AugerPrime upgrade of the Pierre Auger Observatory. It consists of particle counters buried 2.3 m underground next to the water-Cherenkov stations that form the 23.5 km$^2$ large infilled arra y. The reduced distance between detectors in this denser area allows the lowering of the energy threshold for primary cosmic ray reconstruction down to about 10$^{17}$ eV. At the depth of 2.3 m the electromagnetic component of cosmic ray showers is almost entirely absorbed so that the buried scintillators provide an independent and direct measurement of the air showers muon content. This work describes the design and implementation of the AMIGA embedded system, which provides centralized control, data acquisition and environment monitoring to its detectors. The presented system was firstly tested in the engineering array phase ended in 2017, and lately selected as the final design to be installed in all new detectors of the production phase. The system was proven to be robust and reliable and has worked in a stable manner since its first deployment.
LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils from interactions with dark matter particles. Signals from the LUX detector are processed by custom-built analog electronics which provide properly shape d signals for the trigger and data acquisition (DAQ) systems. The DAQ is comprised of commercial digitizers with firmware customized for the LUX experiment. Data acquisition systems in rare-event searches must accommodate high rate and large dynamic range during precision calibrations involving radioactive sources, while also delivering low threshold for maximum sensitivity. The LUX DAQ meets these challenges using real-time baseline sup- pression that allows for a maximum event acquisition rate in excess of 1.5 kHz with virtually no deadtime. This paper describes the LUX DAQ and the novel acquisition techniques employed in the LUX experiment.
108 - T. Dyson , H. C. Chiang , E. Egan 2020
The frequencies of interest for redshifted 21 cm observations are heavily affected by terrestrial radio-frequency interference (RFI). We identify the McGill Arctic Research Station (MARS) as a new RFI-quiet site and report its RFI occupancy using 122 hours of data taken with a prototype antenna station developed for the Array of Long-Baseline Antennas for Taking Radio Observations from the Sub-Antarctic. Using an RFI flagging process tailored to the MARS data, we find an overall RFI occupancy of 1.8% averaged over 20-125 MHz. In particular, the FM broadcast band (88-108 MHz) is found to have an RFI occupancy of at most 1.6%. The data were taken during the Arctic summer, when degraded ionospheric conditions and an active research base contributed to increased RFI. The results quoted here therefore represent the maximum-level RFI environment at MARS.
104 - H. T. Intema 2014
High-resolution astronomical imaging at sub-GHz radio frequencies has been available for more than 15 years, with the VLA at 74 and 330 MHz, and the GMRT at 150, 240, 330 and 610 MHz. Recent developments include wide-bandwidth upgrades for VLA and GM RT, and commissioning of the aperture-array-based, multi-beam telescope LOFAR. A common feature of these telescopes is the necessity to deconvolve the very many detectable sources within their wide fields-of-view and beyond. This is complicated by gain variations in the radio signal path that depend on viewing direction. One such example is phase errors due to the ionosphere. Here I discuss the inner workings of SPAM, a set of AIPS-based data reduction scripts in Python that includes direction-dependent calibration and imaging. Since its first version in 2008, SPAM has been applied to many GMRT data sets at various frequencies. Many valuable lessons were learned, and translated into various SPAM software modifications. Nowadays, semi-automated SPAM data reduction recipes can be applied to almost any GMRT data set, yielding good quality continuum images comparable with (or often better than) hand-reduced results. SPAM is currently being migrated from AIPS to CASA with an extension to handle wide bandwidths. This is aimed at providing users of the VLA low-band system and the upcoming wide-bandwidth GMRT with the necessary data reduction tools.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا