ﻻ يوجد ملخص باللغة العربية
We consider an Erdos-Renyi random graph consisting of N vertices connected by randomly and independently drawing an edge between every pair of them with probability c/N so that at N->infinity one obtains a graph of finite mean degree c. In this regime, we study the distribution of resistance distances between the vertices of this graph and develop an auxiliary field representation for this quantity in the spirit of statistical field theory. Using this representation, a saddle point evaluation of the resistance distance distribution is possible at N->infinity in terms of an 1/c expansion. The leading order of this expansion captures the results of numerical simulations very well down to rather small values of c; for example, it recovers the empirical distribution at c=4 or 6 with an overlap of around 90%. At large values of c, the distribution tends to a Gaussian of mean 2/c and standard deviation sqrt{2/c^3}. At small values of c, the distribution is skewed toward larger values, as captured by our saddle point analysis, and many fine features appear in addition to the main peak, including subleading peaks that can be traced back to resistance distances between vertices of specific low degrees and the rest of the graph. We develop a more refined saddle point scheme that extracts the corresponding degree-differentiated resistance distance distributions. We then use this approach to recover analytically the most apparent of the subleading peaks that originates from vertices of degree 1. Rather intuitively, this subleading peak turns out to be a copy of the main peak, shifted by one unit of resistance distance and scaled down by the probability for a vertex to have degree 1. We comment on a possible lack of smoothness in the true N->infinity distribution suggested by the numerics.
We present a general method for obtaining the spectra of large graphs with short cycles using ideas from statistical mechanics of disordered systems. This approach leads to an algorithm that determines the spectra of graphs up to a high accuracy. In
We solve the q-state Potts model with anti-ferromagnetic interactions on large random lattices of finite coordination. Due to the frustration induced by the large loops and to the local tree-like structure of the lattice this model behaves as a mean
We present a full description of the nonergodic properties of wavefunctions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths:
We consider the problem of coloring the vertices of a large sparse random graph with a given number of colors so that no adjacent vertices have the same color. Using the cavity method, we present a detailed and systematic analytical study of the spac
The fidelity susceptibility measures sensitivity of eigenstates to a change of an external parameter. It has been fruitfully used to pin down quantum phase transitions when applied to ground states (with extensions to thermal states). Here we propose