ﻻ يوجد ملخص باللغة العربية
Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.
In a previous paper [J.-M. Bischoff and E. Jeckelmann, Phys. Rev. B 96, 195111 (2017)] we introduced a density-matrix renormalization group method for calculating the linear conductance of one-dimensional correlated quantum systems and demonstrated i
The low temperature thermodynamics of correlated 1D fermionic models with spin and charge degrees of freedom is obtained by exact diagonalization (ED) of small systems and followed by density matrix renormalization group (DMRG) calculations that targ
Critical transition points between symmetry-broken phases are characterized as fixed points in the renormalization group (RG) theory. We show that, following the standard Wilsonian procedure that traces out the large momentum modes, this well known f
We present a Lattice Non-Perturbative Renormalization Group (NPRG) approach to quantum XY spin models by using a mapping onto hardcore bosons. The NPRG takes as initial condition of the renormalization group flow the (local) limit of decoupled sites,
In these lecture notes, we present a pedagogical review of a number of related {it numerically exact} approaches to quantum many-body problems. In particular, we focus on methods based on the exact diagonalization of the Hamiltonian matrix and on met