ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaotic Information Processing by Extremal Black Holes

158   0   0.0 ( 0 )
 نشر من قبل Stam Nicolis
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review an explicit regularization of the AdS$_2$/CFT$_1$ correspondence, that preserves all isometries of bulk and boundary degrees of freedom. This scheme is useful to characterize the space of the unitary evolution operators that describe the dynamics of the microstates of extremal black holes in four spacetime dimensions. Using techniques from algebraic number theory to evaluate the transition amplitudes, we remark that the regularization scheme expresses the fast quantum computation capability of black holes as well as its chaotic nature.



قيم البحث

اقرأ أيضاً

Using the symmetry of the near-horizon geometry and applying quantum field theory of a complex scalar field, we study the spontaneous pair production of charged scalars from near-extremal rotating, electrically and/or magnetically charged black holes . Analytical expressions for pair production, vacuum persistence and absorption cross section are found, and the spectral distribution is given a thermal interpretation. The pair production in near-extremal black holes has a factorization into the Schwinger effect in AdS and Schwinger effect in Rindler space, measuring the deviational from extremality. The associated holographical correspondence is confirmed at the 2-point function level by comparing the absorption cross section ratio as well as the pair production rate both from the gravity and the conformal field theories. The production of monopoles is discussed.
158 - Shahar Hadar 2018
Black holes display universal behavior near extremality. One such feature is the late-time blowup of derivatives of linearized perturbations across the horizon. For generic initial data, this instability is regulated by backreaction, and the final st ate is a near-extremal black hole. The aim of this paper is to study the late time behavior of such black holes analytically using the weakly broken conformal symmetry of their near-horizon region. In particular, gravitational backreaction is accounted for within the Jackiw-Teitelboim model for near-horizon, near-extremal dynamics coupled to bulk matter.
138 - A. Ulacia Rey 2009
We use the entropy function formalism introduced by A. Sen to obtain the entropy of $AdS_{2}times S^{d-2}$ extremal and static black holes in four and five dimensions, with higher derivative terms of a general type. Starting from a generalized Einste in--Maxwell action with nonzero cosmological constant, we examine all possible scalar invariants that can be formed from the complete set of Riemann invariants (up to order 10 in derivatives). The resulting entropies show the deviation from the well known Bekenstein--Hawking area law $S=A/4G$ for Einsteins gravity up to second order derivatives.
The spontaneous pair production of charged scalars in a near extremal Kerr-Newman (KN) black hole is analytically studied. It is shown that the existence condition for the pair production is equivalent to the violation of the Breitenlohner-Freedman b ound in an AdS$_2$ space. The mean number of produced pairs in the extremal black hole has a thermal interpretation, in which the effective temperature for the Schwinger effect in the AdS$_2$ space persistently holds, while the mean number in the near extremal black hole has an additional factor of the Schwinger effect in the Rindler space. In addition, the holographic dual conformal field theory (CFT) descriptions of the charged scalar pair production are respectively realized both in the $J$ and $Q$ pictures in terms of the KN/CFTs correspondence.
We study the Schwinger effect in near-extremal nonrotating black holes in an arbitrary $D(geq 4)$-dimensional asymptotically flat and (A)dS space. Using the near-horizon geometry $mathrm{AdS}_2 times mathrm{S}^{D-2}$ of near-extremal black holes with Myers-Perry metric, we find a universal expression of the emission formula for charges that is a multiplication of the Schwinger effects in an $mathrm{AdS}_2$ space and in a two-dimensional Rindler space. The effective temperature of an accelerated charge for the Schwinger effect is determined by the radii of the effective $mathrm{AdS}_2$ space and $mathrm{S}^{D-2}$ as well as the mass, charge, angular momentum of the charge and the radius of the (A)dS space. The Schwinger effect in the asymptotically flat space is more efficient and persistent for a wide range of large black holes for dimensions higher than four. The AdS (dS) boundary enhances (suppresses) the Schwinger effect than the asymptotically flat space. The Schwinger effect persists for a wide range of black holes in the AdS space and has an upper bound in the dS space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا