ترغب بنشر مسار تعليمي؟ اضغط هنا

Pore-size dependence and characteristics of water diffusion in slit-like micropores

150   0   0.0 ( 0 )
 نشر من قبل Souleymane Diallo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.O. Diallo




اسأل ChatGPT حول البحث

The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasi- elastic neutron scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (sim 12 and 18 {AA}, denoted respectively ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. This suppression is accompanied by a systematic dependence of the average translational diffusion coefficient Dr and relaxation time <{tau}_0> of the restricted water on pore size and temperature. The observed Dr values are tested against a proposed scaling law, in which the translational diffusion coefficient Dr of water within a nanoporous matrix was found to depend solely on two single parameters, a temperature independent translational diffusion coefficient Dc associated with the water bound to the pore walls and the ratio {theta} of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.



قيم البحث

اقرأ أيضاً

We have explored a model for adsorption of water into slit-like nanochannels with two walls chemically modified by grafted polymer layers forming brushes. A version of density functional method is used as theoretical tools. The water-like fluid model adopted from the work of Clark et al. [Mol. Phys., 2006, 104, 3561] adequately reproduces the bulk vapour-liquid coexistence envelope. The polymer layer consists of chain molecules in the framework of pearl-necklace model. Each chain molecule is chemically bonded to the pore walls by a single terminating segment. Our principal focus is in the study of the dependence of polymer layer height on grafting density and in the microscopic structure of the interface between adsorbed fluid and brushes. Thermal response of these properties upon adsorption is investigated in detail. The results are of importance to understand shrinking and swelling of the molecular brushes in the nanochannels.
Molecular dynamics simulations are carried out to investigate mechanical properties and porous structure of binary glasses subjected to steady shear. The model vitreous systems were prepared via thermal quench at constant volume to a temperature well below the glass transition. The quiescent samples are characterized by a relatively narrow pore size distribution whose mean size is larger at lower glass densities. We find that in the linear regime of deformation, the shear modulus is a strong function of porosity, and the individual pores become slightly stretched while their structural topology remains unaffected. By contrast, with further increasing strain, the shear stress saturates to a density-dependent plateau value, which is accompanied by pore coalescence and a gradual development of a broader pore size distribution with a discrete set of peaks at large length scales.
In order to characterize the geometrical mesh size $xi$, we simulate a solution of coarse-grained polymers with densities ranging from the dilute to the concentrated regime and for different chain lengths. Conventional ways to estimate $xi$ rely eith er on scaling assumptions which give $xi$ only up to an unknown multiplicative factor, or on measurements of the monomer density fluctuation correlation length $xi_c$. We determine $xi_c$ from the monomer structure factor and from the radial distribution function, and find that the identification $xi=xi_c$ is not justified outside of the semidilute regime. In order to better characterize $xi$, we compute the pore size distribution (PSD) following two different definitions, one by Torquato et al. (Ref.1) and one by Gubbins et al. (Ref.2). We show that the mean values of the two distributions, $langle r rangle_T$ and $langle r rangle_G$, both display the behavior predicted for $xi$ by scaling theory, and argue that $xi$ can be identified with either one of these quantities. This identification allows to interpret the PSD as the distribution of mesh sizes, a quantity which conventional methods cannot access. Finally, we show that it is possible to map a polymer solution on a system of hard or overlapping spheres, for which Torquatos PSD can be computed analytically and reproduces accurately the PSD of the solution. We give an expression that allows $langle r rangle_T$ to be estimated with great accuracy in the semidilute regime by knowing only the radius of gyration and the density of the polymers.
When water molecules are confined to nanoscale spacings, such as in the nanometer size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures ($sim$ 150 K), leading to a metastable liquid state with remarkable physical properties. We have investigated the ambient pressure diffusive dynamics of water in microporous Kynoltexttrademark ACF-10 (average pore size $sim$11.6 {AA}, with primarily slit-like pores) from temperature $T=$ 280 K in its stable liquid state down to $T=$ 230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be respectively higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time $<tau>$ when compared to previous findings indicate that it is the size of the confining pores - not their shape - that primarily affects the dynamics of water for pore sizes larger than 10 {AA}. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 {AA} gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer $Q$ ($Qle 0.9$ AA${^{-1}}$). At high $Q$ however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. The best agreement is obtained for the diffusion parameter $D$ associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bi-modal exponential model, is used to parameterize the self-correlation function $I(Q,t)$.
We study pore nucleation in a model membrane system, a freestanding polymer film. Nucleated pores smaller than a critical size close, while pores larger than the critical size grow. Holes of varying size were purposefully prepared in liquid polymer f ilms, and their evolution in time was monitored using optical and atomic force microscopy to extract a critical radius. The critical radius scales linearly with film thickness for a homopolymer film. The results agree with a simple model which takes into account the energy cost due to surface area at the edge of the pore. The energy cost at the edge of the pore is experimentally varied by using a lamellar-forming diblock copolymer membrane. The underlying molecular architecture causes increased frustration at the pore edge resulting in an enhanced cost of pore formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا