ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiscale modeling of ultrafast element-specific magnetization dynamics of ferromagnetic alloys

134   0   0.0 ( 0 )
 نشر من قبل Denise Hinzke
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A hierarchical multiscale approach to model the magnetization dynamics of ferromagnetic ran- dom alloys is presented. First-principles calculations of the Heisenberg exchange integrals are linked to atomistic spin models based upon the stochastic Landau-Lifshitz-Gilbert (LLG) equation to calculate temperature-dependent parameters (e.g., effective exchange interactions, damping param- eters). These parameters are subsequently used in the Landau-Lifshitz-Bloch (LLB) model for multi-sublattice magnets to calculate numerically and analytically the ultrafast demagnetization times. The developed multiscale method is applied here to FeNi (permalloy) as well as to copper- doped FeNi alloys. We find that after an ultrafast heat pulse the Ni sublattice demagnetizes faster than the Fe sublattice for the here-studied FeNi-based alloys.



قيم البحث

اقرأ أيضاً

127 - Somnath Jana 2018
Element specific ultrafast demagnetization was studied in Fe$_{1-x}$Ni$_{x}$ alloys, covering the concentration range between $0.1<x<0.9$. For all compositions, we observe a delay in the onset of Ni demagnetization relative to the Fe demagnetization. We find that the delay is correlated to the Curie temperature and hence also the exchange interaction. The temporal evolution of demagnetization is fitted to a magnon diffusion model based on the presupposition of enhanced ultrafast magnon generation in the Fe sublattice. The spin wave stiffness extracted from this model correspond well to known experimental values.
Recent investigations have advanced the understanding of how structure-property relationships in ferromagnetic metal alloys affect the magnetization dynamics on nanosecond time-scales. A similar understanding for magnetization dynamics on femto- to p ico-second time-scales does not yet exist. To address this, we perform time-resolved magneto optic Kerr effect (TRMOKE) measurements of magnetization dynamics in Co-Fe alloys on femto- to nano-second regimes. We show that Co-Fe compositions that exhibit low Gilbert damping parameters also feature prolonged ultrafast demagnetization upon photoexcitation. We analyze our experimental TR-MOKE data with the three-temperature-model (3TM) and the Landau-Lifshitz-Gilbert equation. These analyses reveal a strong compositional dependence of the dynamics across all time-scales on the strength of electron-phonon interactions. Our findings are beneficial to the spintronics and magnonics community, and will aid in the quest for energy-efficient magnetic storage applications.
206 - I. L. M. Locht 2014
We provide a model for the prediction of the electronic and magnetic configurations of ferromagnetic Fe after an ultrafast decrease or increase of magnetization. The model is based on the well-grounded assumption that, after the ultrafast magnetizati on change, the system achieves a partial thermal equilibrium. With statistical arguments it is possible to show that the magnetic configurations are qualitatively different in the case of reduced or increased magnetization. The predicted magnetic configurations are then used to compute the dielectric response at the 3p (M) absorption edge, which can be related to the changes observed in the experimental T-MOKE data. The good qualitative agreement between theory and experiment offers a substantial support to the existence of an ultrafast increase of magnetisation, which has been fiercely debated in the last years.
Polyelectrolyte gels are a very attractive class of actuation materials with remarkable electronic and mechanical properties with a great similarity to biological contractile tissues. They consist of a polymer network with ionizable groups and a liqu id phase with mobile ions. Absorption and delivery of solvent lead to a large change of volume. This mechanism can be triggered by chemical (change of salt concentration or pH of solution surrounding the gel), electrical, thermal or optical stimuli. Due to this capability, these gels can be used as actuators for technical applications, where large swelling and shrinkage is desired. In the present work chemically stimulated polymer gels in a solution bath are investigated. To adequately describe the different complicated phenomena occurring in these gels, they can be modeled on different scales. Therefore, models based on the statistical theory and porous media theory, as well as a coupled multi-field model and a discrete element formulation are derived and employed. In this paper, the coupled multi-field model and the discrete element model for chemical stimulation of a polymer gel film with and without domain deformation are employed. Based on these results, the presented formulations are compared and conclusions on their applicability in engineering practice are finally drawn.
Identifying an efficient pathway to change the order parameter via a subtle excitation of the coupled high-frequency mode is the ultimate goal of the field of ultrafast phase transitions. This is an especially interesting research direction in magnet ism, where the coupling between spin and lattice excitations is required for magnetization reversal. Despite several attempts however, the switching between magnetic states via resonant pumping of phonon modes has not yet been demonstrated. Here we show how an ultrafast resonant excitation of the longitudinal optical phonon modes in magnetic garnet films switches magnetization into a peculiar quadrupolar magnetic domain pattern, unambiguously revealing the magneto-elastic mechanism of the switching. In contrast, the excitation of strongly absorbing transverse phonon modes results in thermal demagnetization effect only.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا